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PREFACE 

The research presented in this thesis addresses two aspects of 

organometallic chemistry. The first topic is the reactivity studies of 

dioxycarbene ligand in Fe(CO)^(=CÔCH^CH^) and aminooxycarbene complex, 

Re{CO)^(Br)(=cÔCH^CH^H) in which CO is replaced by phosphine or hydrotris 

(pyrazolyl) borate ligands, the Br is replaced by CH3, and the H on the 

carbene N is replaced by CH3. 

The second area of research is the substitution reactions of metal 

carbonyls. This type of reaction is commonly carried out under 

photochemical or thermal conditions. However, two Pt(0) compounds, 

Pt(PPh3)4 and Pt(dibenzylideneacetone)2» catalyze phosphine substitutions 

of metal carbonyls and offers a convenient, high yield route to 

monosubstituted products. 

This thesis consists of four sections, with the first comprising a 

literature review of transition metal promoted reactions of epoxides. The 

following sections represent the research as they are submitted for 

journal publication. Each section contains references, tables, figures, 

and equations pertinent only to the particular article. 
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SECTION I. A REVIEW OF TRANSITION METAL PROMOTED REACTIONS OF EPOXIDES 
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INTRODUCTION 

Epoxides are cyclic three-membered ethers (oxiranes). They are 

1 

extremely valuable because of the many reactions they undergo. Ethylene 

oxide (1; Rj = R2 = R3 = R4 = H) was first prepared by Wurtz in 1859 [1], 

by the reaction of 2-chloroethanol with aqueous potassium hydroxide. Many 

other investigators tried to prepare ethylene oxide by direct oxidation 

and failed until Lefort [2] succeeded in the direct oxidation of ethylene 

to ethylene oxide over a silver catalyst. 

The total annual United States sales value of ethylene oxide exceeds 

$10^ making it one of the most significant organic chemical products 

[3]. Ethylene oxide is a highly reactive molecule. The three-membered 

ring is opened in most of its reactions with compounds such as ammonia, 

organic acids, alcohols, and water; however, in reactions with strong 

anhydrous mineral acids [4), oxonlum salts are formed, HO^ . Ethylene 

oxide polymerizes under thermal Ionic and free-radical catalysis. There 

is a considerable amount of research on epoxy homopolymers and copolymers 

for industrial applications. In this section, reactions of epoxides will 

focus on deoxygenation, rearrangement and carbonylation which are promoted 

by transition metals. 
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DEOXYGENATION 

The deoxygenation of epoxides to olefins is an important reaction in 

organic synthesis (eq. 1). The epoxide is employed either as a protecting 

group [51 or as a key intermediate in the stereochemical transformation of 

an olefin. The transition metal complexes which are capable of reducing 

epoxides to olefins can be grouped broadly into three categories; 

(1) Class I species, e.g., Cr^^(H2NCH2CH2NH2) (Cr^^en), TiClg-LiAlH^ 

(TiClg-LAH), WClg-LAH and s-diketonate complexes of and Mo^^, promote 

nonstereospecific deoxygenation of oxiranes to olefins. (2) Class II 

species, e.g., WClg+n-BuLi and M(CgHg)2 (M = Mo, W) give rise to olefins 

with a predominance of retention of stereochemistry from either cis- or 

trans-epoxides. (3) Class III species, e.g., Co2(C0)g, reduce epoxides 

with inversion of the epoxide stereochemistry. 

The nonstereospecific reduction of epoxides to olefins can be 

explained by a mechanism which involves radicals as intermediates. Kochi 

et al. [61 studied the reduction of epoxides by Cr^^(en). They propose 

that this reduction proceeds via essentially two routes: Cr^^(en) attacks 

at oxygen or carbon to generate either 2 or 3, respectively. The evidence 

ML 
n 

> (1) 

0 

2 3 
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which supports the favorable intermediate 2 comes from the 2,3-

epoxymesityl oxide and styrene oxide showing a greater reactivity than 

cyclohexene oxide; because the C-centered radical 2 should be stabilized 

more by a CO or phenyl group on the than 3. Further reaction with 

Cr^^(en) gives e-oxyalkyl chromium intermediate 4 (Figure 1.1) followed by 

reductive elimination to olefin and Cr^^^. Other reducing metals or metal 

salts such as TiClg-LiAlH^ [71 and WClg-LiAlH^ (81 belong to this group. 

They probably follow a mechanism similar to that of the related chromous 

ion reduction. 

Another mechanism is proposed for the reaction of epoxides and 

0-diketonate complexes of V(II) and Mo(II) (9). The stereospecificity of 

deoxygenation depends on the size of substituents on the epoxide ring and 

on the B-diketonate ligands. The initial intermediate of reaction between 

the reduced metal species and the epoxide is an open-chained one (as 

suggested in Figure 1.2) which can be configurationally trapped by C-M 

bond formation giving a eyelized metallooxetane, hence to yield olefin. 

Competitive C-C bond rotation leads to nonspecific olefin formation. 

Increasing the alkyl group size on epoxides leads to an increase in 

stereospecificity (as demonstrated in Table 1.1). This is because the 

presence of bulky alkyl substituents on the C-C unit in the epoxide 

decrease the rate of rotation around the C-C bond. Also, reducing the 

congestion about the metal (larger ionic size of Mo^^ in comparison with 

and smaller substituents on the diketonate ligands) enhances the 

cyclization rate, thus increasing the stereospecificity of epoxide 

deoxygenation. 
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A ÇriltinL. - - l - f  C r ' U e n )  , 

,Cr"' ^Cr": 
/  /  I I I  

11,.., .r . 0 Cr' 

•v 
C=CC^ + <-

Figure 1.1. Proposed mechanism of nonstereospecific deoxygenation of 

epoxides to olefins by Cr^^(en) 
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Figure 1.2. Two proposed pathways involving diradicals or metallooxetane 

of deoxygenation of epoxides 
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Table 1.1. Deoxygenatlon of epoxides to olefins 

Stereochemi stry 
Epoxide Reagent" % Olefin Yield cis trans 

V 
V-

V 

V(acac)p 
V(dpm)2 
V(tfa)l 
Mo(acac)2 

V(acac)p 
V(dpm)2 
Mo(acac)2 

V(acac)p 
V(dpin)2 
Mofacac)2 
Mo(dpm)2 

V(acac)p 
V(dpin)2 

^ Mo(acac)2 
/ Mo(dptn)2 

V(acac)p 
V(dpm)2 
V(tfa)2 
Mo(acac)2 
Mo(dpm)2 

V(acac)p 
V(dpm)2 
Mo(acac)2 
Mo(dpm)2 

88 51 49 
-100 42 58 
41 44 56 
61 72 28 

45 41 59 
-100 43 57 
66 25 75 

44 43 57 
-100 43 57 
95 83 17 

-100 77 23 

88 32 68 
92 42 58 
93 15 85 
98 22 78 

82 47 53 
99 45 55 
56 41 59 
99 84 16 
96 75 25 

82 33 67 
-100 44 56 
79 14 86 
83 19 81 

0 0 
. II II 
®Acac = 2,4-pentanedionate, CH-CCHCCHo; dpm = dipivaloylmethonate, 

: : sa 
Me^CCCHCCMe^; tfa = 1,1,1-trifluoroacety1acetonate, CF^CCHCCH^. 
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The reduction reaction of epoxides with Na(n^-CgHg)Fe(C0)2 [lOl 

(NaPp) results in the alkoxides 5 (Figure 1.3). Upon reaction in situ 

•> "A: 
Fp \ " Fp Rp 

H /\ H H 0" ^ H ,0H 

FP- + ^ ̂ ^ 

R^ ^2 rp ^2 ' H "2 

5 6 

H. H H H H ^R, /) OH 

R{ Rg 

Fpl 

h i  '2 
Fp Rg 

7 

1 d  2  

'''H 

Figure 1.3. The sequence for retained stereochemistry deoxygenating 

epoxides to olefins by Na(n^-CgHg)Fe(C0)2 

with two equivalents of hexafluorophosphoric acid, 5 is converted 

instantaneously and in high overall yield to the olefin ir-complexes 8. 

The olefin salts are transformed readily at room temperature by treatment 

with sodium iodide in acetone, liberating the olefins. The conversion of 

epoxide to olefin proceeds with retention of configuration as is indicated 

by the conversion of cis and trans-2-butene epoxides to the stereo­

chemical ly unchanged olefins (> 98% retention). The stereochemical result 

may be understood by a mechanism involving an initial S|^2 opening of the 
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epoxide ring by the complex anion followed by the protonation of the 

alkoxides 5 formed the oxonium ion 7. The intermediate alcohol 6 is 

isolated as an air-sensitive solid by reacting a solution of 5 with water. 

Then, a trans-elimination of 7 concerted with the loss of water gives 

olefin It-complexes 8. However, the intermediate alkoxides 5 are thermally 

decomposed [11] to generate the olefins are produced with inverted stereo­

chemistry (eq. 2). The detailed mechanism is not yet clear; it may 

involve a cis-elimination, since epoxide opening by Fp" has been shown to 

occur with inversion (10). Deoxygenation with Co2(C0)g also causes 

inversion of the epoxide stereochemistry in the olefin product [12]. If 

cis-dimethyl epoxy methyl-succinate 9 is treated with a catalytic amount 

of Co2(C0)g for 18 h, a 95% yield of trans-dimethyl-mesaconate 10 is 

obtained (eq. 3). However, the mechanism for this deoxygenation of 

epoxides with inversion of stereochemistry is not yet understood. 

(2) 

5 

Me 

MeOgC LUgMe 

9 

(3) 

10 



www.manaraa.com

11 

REARRANGEMENT 

Epoxides may be rearranged to aldehydes or ketones by several 

transition metals and transition metal complexes (eq. 4). For example. 

Mo(CO)g is known as a homogeneous catalyst for the rearrangement of 

epoxides to aldehydes [13]. A by-product of these reactions is a 

deoxygenated olefin with retained stereochemistry with respect to the 

epoxide. 

The mechanism of the epoxide rearrangement is shown in Figure 1.4. 

Evidence for this mechanism comes from studies of epoxides which are not 

capable of forming stable carbonium ions (e.g., 2,3-epoxide-propyl-p-

methoxyphenyl ether). They do not undergo rearrangement. The proposed 

mechanism is shown in Figure 1.4. Initial epoxide complexation of the 

Mo(CO)g moiety affords complex 11; then, C-0 bond cleavage gives the 

stable benzylic carbonium ion 12. By phenyl migration, 12 rearranges to 

13. Decomplexation of 13 produces the aldehyde and Mo(CO)g which 

continues the catalytic cycle by further complexation with the epoxide. 

The deoxygenated by-products may be due to the interaction of the epoxide 

oxygen with a carbonyl carbon of the metal carbonyl to give 14 which then 

collapses to olefin, COg and the Mo(CO)g moiety. A similar mechanism has 

been proposed for the deoxygenation of sulfines and other organic 

ML 
(4) 
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Ph 

a) 
v. 

Mo(CO)j 
Ph 

V » -
i 
Mo(CO)c 
11  ̂

Ph Ph 

^o(CO), 

12 

Mo(CO)g + PhgCHCHO PhgCtftn-O 

%(CO)g 

13 

Mo(CO)g -COg 

„ VPH ' 

(OOg^O-^^O 

14 

Figure 1.4. The proposed mechanism of rearrangement and deoxygenation of 

epoxides by Mo(CO)g 
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compounds containing S-0 or N-0 bonds by Mo(CO)g [14]. W(CO)g was an 

ineffective catalyst for rearrangement reactions of epoxides (eq. 4) 

possibly because the dissociation of CO from W(CO)g is slower than that of 

Mo(CO)g. Under UV irradiation, Fe(CO)g also induces the isomerization and 

deoxygenation of epoxides [151; however, a thermally Induced reaction of 

Fe(CO)g with epoxides in tetramethyleneurea at 145''C causes only 

deoxygenation [16). When Fe(CO)g is used as a catalyst, trans-stilbene 

oxide is converted to cis-stilbene and benzyl phenyl ketone under photolytic 

conditions. In contrast, the products of the Mo(CO)g-catalyzed reaction 

of trans stilbene oxide are diphenylacetaldehyde and trans-stilbene (Fig. 

1.4); the proposed mechanism involves the free carbocation intermediate, 

12. Therefore, the coordinated intermediate 15 appears to be preferred in 

the Fe(CO)g-catalyzed reactions, as shown in Figure 1.5. 

The oxidative-addition reaction of epoxides with the Ir(I) trimethyl-

phosphine complex, Ir(CgH]^^)(PMe2)3Cl, (18 CgHj^^ = cyclocctene); sheds 

light on the mechanism of the transition metal catalyzed transformation of 

epoxides to aldehyde [17). The reaction of 18 with ethylene oxide, 

propylene oxide or styrene oxide affords the Ir(III)-cis-hydrido-alkyl 

complexes 19, 20, and 21, respectively. On the other hand, 18 reacts 

0 

L = PMe 

19 R = H 

20 R = CHg 

21 R = Ph 
3 
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Mh F«(CO)/ "(OO^FeQ ' H^O 

i H-Fe(CO). 
-Fe(CO)^ 4 

15 16 

-CO 

Ph Ph 

PhCH«-C-Ph <• 
2 II 

Te(CO) 

Figure 1.5. The proposed mechanism of epoxides rearrangement by Fe(CO)g 

under UV irradiation 



www.manaraa.com

15 

rapidly with acetaldehyde to yield the cis-acetylhydridoiridium (III) 

complex, 22. This excludes the possibility that the epoxides rearrange to 

aldehydes then react with 18. The proposed mechanism of this reaction 

suggests an oxidative addition of the epoxide to the Ir(I) complex at the 

Ir L = PMe. 

22 

least substituted C-0 bond. s-H elimination of the dipolar intermediate 

23 or metallooxetane 24 follows to yield the observed cis-hydrido-

alkyliridium (III) complexes (Figure 1.6). In addition, the formation of 

25 from the reaction of 18 and 8,6-dideuteriostyrene oxide (eq. 5) 

supports this mechanism. 

H II 
/CD^CPh 

Ir(CgH^^)(PMe2)^Cl + PhCHCDg > /}\ (5) 
0 CI L L 

25 

Several Rh(I) complexes, such as [Rh(C0)2Cl jg, RhCXPPhg)^, and 

RhCl(C0)(PPh3)2 have been shown to act as catalysts and convert epoxides 

to aldehydes or ketones. Rhodium(I) catalysts which function as Lewis 
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L.IrCl + R-CH—CH, 
4 Y 2 

R-CH-CH, 
I I f 
0 Ir+L»Cl 

23 

R-CH-CH, 
I  I  2  
0—IrLjCl 

24 

p H 

-> R-C-CHg-trLgCI 

Figure 1.6. The sequence of the reactions between epoxides and Ir(I) 

complexes, 18 
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acids, for example RhpfCOl^CTg, transform disubstituted epoxides mainly to 

aldehydes rather than ketones (18). Initial coordination of the metal to 

the epoxide oxygen is proposed to give a carbonium ion intermediate 26 as 

shown in Figure 1.7. The relative reaction rates of epoxides 1n the 

presence of (RhCl(C0)2l2 (styrene oxide > 3,4-epoxy-3-methyl-l-butene > 

3,4-epoxy-2-methyl-l-butene > 3,4-epoxy-l-butene) suggest that the 

reaction intermediate has carbonium ion character and this mechanism is 

clearly related to the Lewis acid catalyzed [19j rearrangement of epoxides 

to ketones or aldehydes. Ring opening of 26 gives the dipolar 

intermediate 27 and then migration of the most electron-releasing group 

generates an aldehyde. 

Other Rh(I) complexes, e.g., RhCl(PPh3)3, RhBrfPPhg)], and 

RhCl(C0)(PPh3)2 which do not act as acids catalyze the selective 

rearrangement of disubstituted oxiranes to ketones (eq. 6) [20). The 

first step in the RhClfPPhg)] catalyzed rearrangement is proposed to be 

the formation of the 14-electron complex RhClfPPhgjg by dissociation of 

PPhg. At 170-220°C in the presence of an epoxide, dissociation is fast 

and complete. The liberated PPhj is removed continuously as O^PPhj which 

is detected (eq. 7). Addition of about one equivalent of triphenyl-

phosphine lowers the reaction rate by 44%, but further addition of PPhg 

(6) 
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X 

26 

-r 

27 

\ 

-C—Ç- + <• 

0 

Figure 1.7. The Lewis acid, e.g., [RhClfCOiplg, catalyzed rearrangement 

of epoxides 
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CgHgCH-^HCgHg + PPhg > PhgP-CHCgHg > CgHgCH'CHCgHg + O^PPhg (7) 

'0-CHCgHg 

has no effect on the rate. In the presence of a large excess of 

1-methylnaphthalene (solvent), the bls(phosphine) complex has been proven 

to be solvated, RhCl(PPh3)2(solv). Therefore, the active catalyst is the 

solvate RhClfPPhgjgfsolv) where "solv" may represent a coordinated 

epoxide. Unlike Lewis acid catalyst [RhCl(00)2)2» which transforms 

disubstituted epoxides to aldehydes, RhCl(PPh3)3 and the active solvated 

RhCl(PPh3)2(solv) convert disubstituted epoxides to ketones. 

The most probable mechanism for RhCl(PPh3)3 involves oxidative 

addition of an oxirane C-H bond to the rhodium catalyst. In this 

mechanism, the epoxide is activated by reversible nucleophilic attack of 

the rhodium at the oxirane carbon atom having the lowest electron density 

as in 28 (eq. 8). Intermediate 28 is assumed to undergo a slow 

.A 
XCgH^CH-CHCgH^Y + RhCl(PPh3)2(solv) 

A / '  
C C 

28 

[Rh]^ ^CgH^Y 

(8) 

CI H 

\l / 
[Rhl = Rh 

L [ ̂  solv 
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Intramolecular s-hydride transfer from the metal to yield a dipolar 

intermediate 29 (eq. 9). The kinetic isotope effect (k^/kg = 1.93) is 

typical for hydride transfer reactions [21]. In the final step, 29 

undergoes reductive elimination yielding the active Rh(I) catalyst and the 

ketone. The complete catalytic cycle for the rearrangement of epoxides to 

ketones is summarized as follows (Figure 1.8): (a) fast dissociation of 

RhClfPPhg)^ to the active catalyst RhClfPPhgjgfsolv), (b) fast oxidative 

cis addition of the epoxide to the active catalyst RhCl(PPh3)2(solv) to 

give 28, (c) slow intramolecular hydride transfer 28 - 29, (d) formation 

of the product and active catalyst by reductive elimination. 

(Rhi+ 

•> XCgH^—Ç—CHgCgH^Y (9) 

0' 

29 
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-PPh, XCgH.CH-CHCgH.Y 
RhClfPPhg), RhCTfPPhgigfsolv) 2J 6_4_> 

c,j w .J K" 
Rh^ \,H,Y > ©Rfï-C-O" 

/ 1  \  0  4  / I I  
L solv solv ^ CgH^X 

28 29 

RhClfPPhgigfsolv) 

x-^y^-cHg-^y-Y 

Figure 1.8. The catalytic cycle for the rearrangement of epoxides to 

ketones by RhClfPPhg)] 
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CARBONYLATION 

The Rh(I) complex, trans-carbonylchlorobis(triphenylphosphine) 

rhodium(I), catalyzes the carbonylation of epoxide in MeOH at 100°C 

yielding 67% of s-lactone (eq. 10) (22). Two paths are proposed for 

Ph 
RhCl(C0)(PPh.)2 —CHp 

PhCH-CHm + CO ) 2 (lo) 
^ MeOH, 100°C ^C—0 

S -lactone formation. Figure 1.9 shows the Rh catalyst acting as a Lewis 

acid toward the epoxide oxygen. C-0 bond cleavage followed by CO addition 

generates the dipolar intermediate 31. By reductive elimination, 

B-lactone is obtained along with RhClfCOjfPPhgjg to complete the catalytic 

cycle. 

Another possible route is shown in Figure 1.10; here the oxidative 

addition of Rh(I) to the epoxide C-0 bond produces 33. Formation of the 

8-lactone is achieved by CO insertion into the Rh-0 bond followed by 

reductive elimination. 

However, CogfCOig [23], KgFefCO), [24], and HCofCO)* [25] catalyze 

carbonylation of ethylene oxide and MeOH to afford the corresponding 

hydroxyester. Ethylene oxide reacts with HCofCO)^ and CO (3000 psi) in 

MeOH at 64°C to give methyl-3-hydroxypropionate (eq. 11) in 55% yield; 

propylene oxide, styrene oxide and isobutylene oxide react similarly 

[25]. Ethylene oxide in ether solution under 1 atm of carbon monoxide 

reacts rapidly with the cobalt hydridocarbonyl at 0°C yielding 
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RCH-CH, + ^Rh:^ > RCH-CH, > RCH-CH, 

V' " " y ' 4' 

>Rh< 

30 31 

—> RCH-CHp > RCH-CH, + ^RhC" 
I I ' :  I  I  2  ^  \  

A 0 y C 0 

32 
0' 

/, \ 

Figure 1.9. RhClfCOjfPPhgjg, acting as Lewis acid catalyst for s-lactone 

formation 
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t 

Cl 
RCH-CH- + Rh(I) > —^> 

V ' "Y k;-':'' 

33 

CI. I  H'V^K CI .PPh, 
^ RÇH-ÇH, 

PhsP PPhT"^" PhsP 
^ 34 

Figure 1.10. RhClfPPhgigfCO) catalyze s-lactone formation through 

oxidative addition of epoxide C-0 bond 
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A HCo(CO), 
H-C CH, + CO + CH.OH —> HOCH-CH^COOCH, f.\\ 
2 2 3 65°C ^ ^ 3 (11) 

3-hydroxypropionyl-cobalt tetracarbonyl (eq. 12). The structure of this 

product was confirmed by its IR spectrum and by isolation of the complex 

CO + HgC^Hg + HCO(C0)4 ^ther ^ HOCHgCHgCOCofCO), 

0 

as the triphenylphosphine derivative, H0CH2CH2CCo(C0)2(PPh2). The 

mechanism of eq. 12 has been proposed as shown in Figure 1.11. 

A direct Diels-Alder reaction of COg with 1,3-dienes to generate 

s-lactones (eq. 13) does not occur. However, generation of 6-lactones 

( - 1 —  a  

from 1,3-dienes can be achieved in two steps if the diene is first 

epoxidized and then the epoxide carbonylated in the presence of transition 

metal compounds. The carbonylation of vinyl oxiranes to generate 

5-lactones (26) is assisted by transition metal complexes, e.g. Fe(CO)g, 

[Rh(l,5-cyclooctadiene)ClIg (eq. 14). The light induced complexation of 

vinyl oxiranes by Fe(CO)g generates n-allyl complexes 35; carbonylation of 
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/\ + HCofCO), > HOCHgCHgCoCCO)^ 

H0CH2CH2CO(C0)^ + CO > HOCHgCHgCOCoCCO)^ 

HOCHgCHgCOCofCO), + CH3OH > HOCHgCHgCOOCHg + HCo(CO)^ 

Figure 1.11. The proposed mechanism of formation of hydroxyester by 

HCo(C0)4 
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" CX * CX • CI. "" 
these complexes with CO gas in MeOH gives good yields (65 ~ 99%) of the 

unsaturated 6-lactones. 

(OOjFe-c' 

3S 

The synthesis of halohydrin esters is accomplished via palladium 

complex-catalyzed carbonylation of organic halides in the presence of 

epoxides (eq. 15) [27]. The reaction was carried out in an autoclave 

_ PdI(Ph)(PPh,). 
RX + CO + Y R-O-OCHgCHgX (15) 

0 

with 20 atm of CO gas under stirring at 130°C, and the resulting 

halohydrin ester was obtained by distillation (42 ~ 75%). The proposed 

mechanism is shown in Fig. 1.12. The acyloxonium ion 36 is postulated as 
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RCOCHLCHLX u d d 

•> [Pd] 

R-C-0(^'[Pd]X 

/> 

[Pd] R 4 

[Pd] = PdlfPhjfPPhgjg 

Figurew 1.12. The proposed mechanism for halohydrin ester synthesis by 

PdI(Ph)(PPh3)2 
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an intermediate; the same type of intermediate was proposed earlier in 

other reactions, such as the group VI metal carbonyl-catalyzed acylative 

cleavage of esters by acid chlorides [28). 
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CONCLUSION 

The foregoing section summarizes the literature in the field of the 

deoxygenation, rearrangement and carbonylation of epoxides induced by 

transition metal complexes. Epoxides are very important starting 

materials which convert to some useful organic compounds. It might be 

anticipated that other transition metal catalyzed reactions of epoxides 

are possible. Some of these possibilities were examined in the course of 

the studies reported in this dissertation. 
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SECTION II. SYNTHESIS, STRUCTURE, AND CATALYTIC REACTIONS OF 

DIOXYCARBENE COMPLEXES OF IRON AND OSMIUM 
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ABSTRACT 

033(00)22 reacts with ethylene oxide in the presence of Br" to give 

two of the few known dioxycarbene cluster compounds, 0s3(C0)jj-

(=CÔCH^CH^). I ,  and 053(00)io(=cÔCH^CH^)2,  II .  The structure of II ,  

established by X-ray diffraction studies, shows the dioxycarbene ligands 

to be in terminal, equatorial positions. Investigations of reactions of 

the dioxycarbene ligand showed that Fe(00)4(=OOOH2CH20), III, decomposes 

with evolution of OO2 and ethylene, but reacts with oxidizing agents, 

Me3N0 or O2, to produce ethylene carbonate. The reaction of III with H2 

gas gives 1,3-dioxolane. In exploratory studies, ethylene oxide, 00 and 

H2 In the presence of Pt, Pd and Rh catalysts were found to give 1,4-

dioxane, 2-niethyl-1,3-dioxolane and 2-ethyl-l,3-d1oxolane. 
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INTRODUCTION 

Our group has recently synthesized a number of transition metal 

cyclic dioxycarbene complexes by the halide-catalyzed reaction of metal 

carbonyls [1-4) with ethylene oxide according to eq. 1. 

CH, 

W~C=0 + 0 
7 

M=C^ (1) 

CHg N) 

M = CpFe(C0)2+, CpRufCOig*, CpMn(CO)(NO)+, CpFefCOifPPhg)^, 

Mn(C0)4X (X = CI, Br, I), RefCOi^X (X = CI, Br, I), FefCO)*, MngfCOjg, 

Re2(C0)g 

In this paper, we describe the synthesis of dioxycarbene complexes 

derived from Os3(CO)j2 and an X-ray structural determination of one of 

them. Also, various reactions of the dioxycarbene ligand in FeCCO)^-

(=C0CH2CH20) are examined, and attempts to catalyze reactions of ethylene 

oxide, H2 and CO are reported. 
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EXPERIMENTAL 

General methods 

All reactions were performed under prepurified Ng. Unless noted 

otherwise, reagent grade chemicals were used without further purifica­

tion. Methylene chloride, hexanes and acetonitrile were distilled from 

CaHg and stored under Ng over type 4 Â molecular sieves. Tetrahydrofuran 

(THF) was distilled from sodium benzophenone ketyl under N2. 

The starting compound 053(00)^2 was prepared from OsO^ by a modifica­

tion of a literature procedure [51. The compound Fe(CO)^(=CÔCH^CH^) was 

synthesized from Fe(CO)g and ethylene oxide [4], Trimethylamine oxide was 

purified by sublimation at 70 "C in vacuum. The catalysts (10% Pd/C, 10% 

Pt/C, 5% Rh/C, 10% Pd/AlgOg and PdClg) were obtained from commercial 

sources. High pressure reactions were carried out in a 300 ml stainless 

steel pressure autoclave (Parr, model no. 4761). 

Infrared spectra were recorded on Perkin-Elmer 681 instrument. 

NMR spectra were recorded on a Nicolet NT-300 spectrometer. NMR 

spectra were recorded at -20°C on a JEOL FX-90Q or Bruker WM-300 spectro­

meter; Cr(acac)3 (0.1 M) was added to reduce data collection times. 

Melting points (uncorrected) of the compounds were determined in air on a 

Thomas hot-stage apparatus. GC-mass spectra were obtained on a Finnigan 

4000 GC/MS instrument; FAB spectra of compounds I and II were obtained on 

a Kratos MS 50. 
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Synthesis of OsgfCOjiif'COCHgCHgÔ), I 

To a mixture of 0.15 g (1.4 mmol) of NaBr in 1 ml of BrCH2CH20H and 

25 ml of ethylene oxide at 0°C was added 0.12 g (0.13 mmol) of 0s3(C0)j^2' 

The mixture was stirred at O'C for 3 days. When the reaction was complete 

(IR evidence), the solution was taken to dryness in vacuum. The crude 

compound was extracted with CHgClg, and the CH2CI2 solution was filtered 

and chromatographed on a silica gel column (2.5 x 20 cm) using 1:2 

CH2Cl2/hexanes as the eluent. The solvent was removed under vacuum from 

the yellow band eluting from the column. The residue was dissolved in 

CH2C12» and yellow needle crystals of the product were obtained from 

CH2Cl2/hexanes at -20°C. Yield: 0.094 g, 73%; M.p. (dec.) 92-94°C. 

Anal. Calcd. for OsgCi^H^Oig: C, 17.67; H, 0.42. Found: C, 17.57; H, 

0.45. IR(CH2Cl2) v (CO): 2119 (m), 2062 (s), 2051 (sh), 2036 (vs), 2010 

(sh), 2001 (m), 1991 (s), 1970 (m) cm"^ NMR (CDCI3): 6 4.66 (s, 

OCH2). NMR (CD2CI2) at -20 'C: 6 212.15 (carbene C), 189.35, 189.17, 

184.57, and 184.36 (CO), 71.10 (OCH2) ppm. Mass spectrum: m/e 951.9 

(parent ion). 

Synthesis of Os3(CO)^o(=CÔCH^CH^)2, II 

To a cooled mixture (0°C) of 1.0 g (9.9 mmol) of NaBr and 5 ml of 

BrCH2CH20H in a pressure autoclave previously purged with N2 was added 

1.0 g (1.11 mmol) of 0s3(C0)j^2* While stirring the mixture with a 

magnetic stirring bar, 30 ml of ethylene oxide was introduced. After 

closing the autoclave, its contents were stirred at room temperature for 

52 h. Then, the pressure was released and the autoclave was opened. 
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Unreacted ethylene oxide was evaporated by a rapid stream of Ng. The oily 

residue was dissolved in CH2CI2* and the solution was chromatographed on a 

silica gel column (2.5 x 35 cm). The first band (yellow) which was eluted 

with 1:2 CHgClg/hexanes contained Os3(CO)^(COCHgCHgO). The second band 

(orange) was eluted with 1:1 CHgClg/hexanes and contained Os3(CO)jq-

(=C0CH2CH20)2. The orange solution was evaporated under vacuum to yield 

an orange-yellow powder, which was recrystallized from CH2Cl2/hexanes at 

-20 "C. Orange needle crystals were obtained. Yield: 0.271 g of 

Os3(CO)ii(=CÔCH^CH^), 26%; 0.381 g of Os3(CO)io(=CÔCH^CH^)2. 35%. M.p. 

of Os3(CO)jg(=C0CH2CH20)2: 126°C. Anal. Calcd for C^gH0O^^Os3: C, 

19.30; H, 0.80. Found: C, 19.68; H. 1.03. IR(CH2Cl2) v(CO): 2099 (w), 

2041 (s), 2033 (sh), 2010 (vs), 2001 (sh), 1971 (m), 1948 (mw) cm'^. 

NMR (CDCI3): 5 4.58 (s, OCHg). NMR(CD2Cl2) at -20°C: 6 214.11 

(carbene C), 191.56, 191.18, 191.04, and 186.27 (CO), 70.04 (OCHgJ ppm. 

Mass spectrum: m/e 995.9 (parent ion). 

Reactions of Fe(CO)^(=CÔCH^CH^), III 

Decomposition of Fe(C0)4(=CÔCH^CH^). When Fe(C0)4(=CÔCH^CH^) 

in CH2CI2 was stirred at room temperature for more than 1 day, decomposi­

tion to a brown precipitate (probably Fe) and Fe(CO)g was evident; 

presumably the other products were CO2 and C^H^; the CO2 was identified as 

one of the products previously [4). When a CH2CI2 solution of Fe^CO)^-

(=C0CH2CH20) was injected into the Finnigan GC-MS (injector block temper­

ature was 250"C, and capillary column was 45°C), CO2 and C2H4 were 

identified as the major decomposition products. 
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Reaction of Fe(CO)^(=cÔCH^CH^) with Hg. 0.25 g of 
r -n 

Fe(C0)4(=C0CH2CH20) in 5 ml of decalin was pressurized in an autoclave 

with 71.5 atm of Hg gas at room temperature; it was heated to 200°C and 

stirred for 24 h. After the pressure was released, the IR spectrum of the 

reaction mixture showed that Fe(C0)4(=C0CH2CH20) had reacted completely, 

and a brown precipitate (probably Fe) had formed. A GC and GC-MS spectrum 

of the reaction solution showed the formation of a 27% yield of 1,3-

dloxolane. 

Reaction of Fe(CO)^(=CÔCH^CH^) with Me^NO. To 0.12 g 

(0.50 mmol) of Fe(CO)^(=cÔCH^CH^) in 20 ml of CH3CN at -78 "C, 0.197 g 

(2.5 mmol) of Me^NO was added. The reaction mixture was allowed to stir 

at room temperature for 18 h. A brown precipitate was filtered from the 

mixture, and the solution was evaporated under vacuum. Fe(CO)^(NCMe) [6] 

[IR^CHgClg) v(CO): 2050 (m), 1953 (s), 1931 (vs) cm"^. h NMR (CDCI3); 

6 2.70 ppm (s^CHgCN)] was extracted from the residue with hexanes. The 

unextracted residue was ethylene carbonate (24% yield) [IR(CH2Cl2) 

v(C0): 1810 (vs), 1778 (s) cm'l. NMR (CDCI3): 6 4.51 ppm (s, OCHg)!. 

Catalytic reactions of ethylene oxide, CO and Hg 

The autoclave containing 2 ml (40 mmol) of ethylene oxide, 0.030 g 

(0.50 mmol) of NaCl, 2 ml of CICH2CH2OH and 0.04 mmol of catalyst was 

pressurized with 20.4 atm of Hg and 20.4 atm of CO. The following 

heterogeneous and homogeneous catalysts were used: 10% Pd/C, 10% Pt/C, 

10% Pd/Al203, 5% Rh/C, PdCl2, PdCl2(PPh3)2. The autoclave was heated with 

stirring at 175-190°C for 10 h. After cooling to room temperature, the 
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pressure was released and the autoclave was opened; the reaction mixture 

was analyzed by capillary GC (temperature programmed to 200°C), which 

indicated the presence of several products. The major products of all of 

these catalytic reactions were 1,4-dioxane and 2-methy1-1,3-dioxolane. 

The yields (based on ethylene oxide) of 1,4-dioxane (17%) and 

2-methyl-l,3-dioxolane (50%) in the 5% Rh/C-catalyzed reaction were 

determined by GC-MS using standard solutions of these compounds and 

t-butylbenzene as an internal standard. 
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CRYSTAL STRUCTURE DETERMINATION OF Os3(CO)io(=CÔCH^CH^)2, II 

Data collection and reduction 

A crystal suitable for data collection, approximately 0.06-0.11 mm on 

a side, was selected, placed inside a glass capillary and mounted on a 

standard goniometer. All intensity data were collected at 245 K. The 

unit cell parameters were initially calculated using an automatic indexing 

procedure [7]. The observed systematic absences of Oka: k=2n+l, hOa: 

a=2n+l, and hkO: h=2n+l indicated the space group Pbca. Final lattice 

constants were determined by a least squares fit to the 2e values of 14 

higher angle reflections. The intensities were corrected for Lorentz, 

polarization, and absorption effects (using an empirical absorption 

correction program [8] and includes a spherical correction with uR=3.2). 

Table 1 contains information pertinent to the data collection and 

reduction. 

Structure solution and refinement 

Using an osmium-osmium vector for the three-dimensional Patterson 

superposition, analysis revealed the appropriate positions for the osmium 

atoms. The remaining non-hydrogen atoms were located via alternate cycles 

of least squares calculations [9] and electron difference density 

calculations [10]. The atomic scattering factors were those found in the 

International Tables [11]. Positions of the hydrogen atoms were 

calculated assuming a C-H bond distance of 1.05 Â. 

Restraints were added to the bond distances [12] due to the 

relatively small contribution to total scattering made by the individual 
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Table 1. Crystal data for Os3(CO)io(=cÔciH^CH^)2. II 

Empirical formula 

Formula weight 

Crystal system 

Space group 

a(A) 

b(i) 

c(A) 

V(&3) 

z 

w(MoKa)(cm-l) 

Pcalc(9 cm-3) 

T(K) 

Diffractometer 

Monochromator 

Reflections measured 

Radiation 

Scan type 

Standard reflections® 

Reflections collected 

Maximum 2e (degrees)^ 

OS3O14C16H8 

994.80 

orthorhombic 

Pbca 

15.391(4) 

16.374(3) 

17.911(2) 

4493.(1) 

8 

180 

2.94 

245 

SYNTEX P2i  

oriented graphite 

hkl, hkl 

MoKa(x=0.71034 Â) 

w-scan 

1 (measured every 100) 

4155 collected, 1901 observed (I>2a(I)) 

40 

"No noticeable decay had occurred in the intensity of the standard. 

^The maximum in 20 was limited due to a rapid fall off of intensity as 
a function of sin(0). 



www.manaraa.com

44 

Table 1. Continued 

Minimum 2e (degrees) 

Number of unique reflections 

Max. number of parameters refined 

RC 

3 

1135 (I>2a( r ) )  

0.103 

120 

0.054 (unrestrained = 0.051) 

0.058 (unrestrained = 0.055) 

CRay':|Fo-<Fo'l/:<Fo>: «'sllFol-|Fol 
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Table 2. Atom coordinates (fractional x 10^) and equivalent isotropic 

thermal parameters® (Â^ x 10^) in Os3(CO)2o(=CÔCH2CH^)2, II 

Atom X y z U 

Osl 3467.(l)b 508.(1) 1921.(1) 54.c 

Os2 2809.(1) -247.(1) 581.(1) 53.c 

Os3 2152.(1) 1312.(1) 1064.(1) 52.c 

Oil 4559.(27) -889.(22) 2536.(28) 90.c 

012 1947.(27) 74.(30) 2940.(24) 113.c 

013 5054.(22) 988.(25) 1002.(23) 84.c 

021 4141.(22) -1612.(22) 487.(22) 77.c 

022 1412.(36) -537.(36) -593.(28) 148.c 

023 3923.(33) 776.(25) -474.(30) 116.c 

024 1703.(25) -1214.(22) 1700.(22) 86.c 

031 1698.(29) 2668.(25) 2152.(25) 109.c 

033 551.(26) 395.(30) 1570.(25) 113.c 

032 3647.(29) 2308.(23) 450.(24) 97.c 

CIO 3730.(27) 1386.(30) 2585.(30) 55.(14) 

0101 4448.(25) 1927.(27) 2544.(34) 108.(15) 

= 1/3 z X 10^ where the temperature factors are defined as 

exp(-2n 2 h^hja^ajUij). 

^Estimated standard deviations are given in parentheses for the least 
significant digit in this and all succeeding tables. 

^Atom refined anisotropically. 

^Atom refined isotropically. 



www.manaraa.com

46 

Table 2. Continued 

Atom X y z U 

ClOl 4407.(39) 2466.(44) 3167.(47) 86.(19)d 

C102 3513.(42) 2407.(46) 3553.(47) 93.(21)d 

0102 3200.(25) 1709.(26) 3163.(28) I05.(14)d 

Cll 4171.(32) -332.(36) 2309.(33) 69.(16)d 

C12 2527.(34) 220.(39) 2540.(39) 82.(19)d 

C13 4461.(32) 850.(31) 1385.(34) 59.(15)d 

C21 3610.(31) -1114.(31) 553.(32) 62.(15)d 

C22 1976.(38) -399.(40) -178.(40) 90.(20)d 

C23 3532.(46) 371.(50) -55.(47) 112.(25)d 

C24 2110.(37) -836.(32) 1268.(32) 65.(15)d 

C30 1506.(35) 1577.(34) 204.(35) 75.(17)d 

0301 1844.(24) 1930.(24) -456.(27) 93.(13)d 

C301 1196.(53) 2010.(56) -1021.(60) 131.(30)d 

C302 379.(52) 1581.(55) -712.(52) 116.(25)d 

0302 641.(22) 1358.(24) 19.(25) 84.(12)d 

C31 1870.(35) 2157.(42) 1731.(39) 84.(20)d 

C32 3123.(36) 1895.(39) 722.(41) 84.(20)d 

C33 1201.(32) 681.(31) 1371.(32) 56.(15)d 
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carbon atoms in the presence of osmium and the large absorption effect due 

to the latter element (dos=c=l'64-2.04 Â, dc_Q=1.10-1.44 Â prior to adding 

restraints). Analytical scattering factors were those found in the 

International Tables [13]. The "ideal" standard deviation for bonded 

distances was set at 0.0133; the actual value was 0.0061 indicating a 

proper choice of restraint targets. 

Accurate standard deviations were not possible to obtain from RESLSQ 

since a sparse normal equations matrix is used. The values reported 

throughout this paper were obtained from the full-matrix routine in ALLS, 

by inverting the normal equations matrix for atoms with the positions from 

RESLSQ, and thus they represent the maximum value for the standard 

deviations of the parameters. 
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RESULTS AND DISCUSSION 

Synthesis of 0s3(C0)ji(=CÔCH^CH^), I and Os3(CO)jo(=CÔCH^CH^)2, II 

Since RU3(CO)io(=cÔCH^CH^)2(4] and (u-H)0s3(C0)g(u3-CPh)[=C(0Me)2l-

[14] are the only known clusters with dioxycarbene ligands, we explored 

the possibility that our previous method (eq. 1) of preparing cyclic 

dioxycarbene complexes from metal carbonyls could be extended to 

Os3(CO)i2' Indeed, 053(00)12 reacts with ethylene oxide in the presence 

of Br" (eq 2) to form the mono, I, and bis, II, carbene products. The 

. BrCHpCH,OH,NaBr , , 
Os3(CO)i2 + 0^ ^ > Os3(CO)ii(=C0CH2CH2O) + 

I 

0S3(C0)10(=CÔCH^CH^)2 (2) 

II 

preparations of I and II were performed under a variety of conditions 

(Table 3); no 053(00)12 remained unreacted in any of the reactions. At 

0°C, the reaction gives only I (after 3 days); however, at 25°C and 100*C, 

both I and II are produced which suggests that 0s3(C0)i0(=C0CH2CH20)2 is 

produced by a further reaction of ethylene oxide with 053(00)11-

(=C0CH2CH20). Yields of both I and II are low when the reaction is run at 

high temperature (100°0). This is presumably due to decomposition of the 

products at this temperature; in fact, the decomposition temperatures of 

the I and II solids are 92°C and 120°0, respectively. 
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Table 3. Conditions for the preparations of I and II 

Temperature CO Pressure Time % Yield, I % Yield, II 

CC 3 days 73% —-

25°C 34 atm I day 29% trace 

25°C — 52 h 26% 35% 

100°C 34 atm 1 h 14% 10% 
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The carbene ligands in I and II could either be in axial or 

equatorial positions. In other M3 clusters whose structures have been 

established by X-ray diffraction, the non-carbonyl ligands are axial in 

OS3(CO)i2_n(NCMe)n (n=l or 2) [15] and RUgfCOjig.nfCNBut)^ (n=l or 2) 

[16], but equatorial in OsgfCOiiifPfOMe)]] [17], RugfCOjiifPPhg) [18] and 

OsgfCOliofs-trans-C^Hg) [19]. In an attempt to establish the structures 

of I and II, we compare their IR spectra in the v(CO) region with those of 

clusters with known structures (Table 4). Because of the large number of 

absorptions in the spectra of both the axial and equatorial isomers, it is 

not possible to assign unequivocally structures to I and II on this basis. 

The two cyclic dioxycarbene groups in compound II are equivalent, as 

indicated by the one sharp CHp singlet in the NMR spectrum and singlets 

for the carbene and CH2 carbons in the spectrum. The NMR spectra 

of I and II recorded at room temperature showed only one broad band in the 

carbonyl region (-180 ppm downfield from Me^Si), indicating that the CO 

ligands are fluxional; however, at -20°C, four CO resonances were observed 

in both I and II indicating reduced fluxionality of the compounds. In 

Ru3(CO)j^q(=C0CH2CH2O)2, the carbonyl groups give rise to a sharp singlet 

at 204.1 ppm at room temperature in the ^^C NMR spectrum [4]. Thus, 

Ru3(C0)j^g(=C0CH2CH20)2 is more fluxional than II. A similar difference in 

fluxionality is seen in the parent M3(C0)i2 (M=Ru, Os) clusters where the 

Ru cluster shows a single CO resonance even at -100°C [20], whereas, the 

CO doublet in 0s3(C0)j^2 does not coalesce until 70°C [21]. 
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Table 4. IR spectra of 1^3(00)^2. .pLp complexes 

Complexes 

ec|-Ru3(C0) j_]_(PPb3)® 2087 m, 2046 s, 2030 sh, 2023 sh, 2014 
s, 1996 sh, 1986 m, 1972 sh, 1960 sh 

ax-Ru3(C0)ii(CNtBu)& 2093 w, 2047 s, 2040 s, 2016 m, 1998 m, 
1995 m 

ax-0s3(C0)ii(NCMe)b 2103 w. 2052 s, 2040 s, 2020 m, 2000 vs, 
1984 sh, 1981 m, 1969 vw, 1960 vw 

0s3(C0)II(=C0CH2CH2Ô)® 2119 m, 2062 s, 2051 sh, 2036 vs, 2010 
sh, 2001 m, 1991 s, 1970 m 

eq,eq-0s3(C0)iQfs-trans-C^Hg)^ 2109 m, 2063 m, 2047 s, 2019 vs, 1994 s, 
1975 m, 1942 vw 

ax,ax-Ru3(CO)^o(CN^Bu)2® 2065 w, 2020 s, 2007 m, 1996 s, 1990 m, 
1986 m 

ax,ax-0s3(C0)2Q(NCMe)2^ 2077 w, 2025 sh, 2019 vs, 1982 s, 1953 m 

eq « eq-0s3 (CO) (=C0CH2CH2Ô) 2^ 2099 w, 2041 s, 2033 sh, 2010 vs, 2001 
sh, 1971 m, 1948 mw 

®In hexane. 

^In cyclohexane. 
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Table 5. Selected bond angles (") and distances in 

0s2(C0)jq(=C0CH2CH20)2^ JJ 

N=1 N=2 N=3 

Os(N)-Os(N+l)C 2.883(3) 2.877(3) 2.854(3) 

Os(N)-Cggrbene 1.91(5) -  — —  —  1.88(6) 

Os(N-l)-Os(N)-Os(N+l) 60.19(7) 59.42(7) 60.39(7) 

Os(N-l)-Os(N)-Cax 84(2), 99(2) 83(2), 94(3) 94(2), 83(2) 

Os(N+l)-Os(N)-Cax 97(2), 89(2) 85(2), 93(2) 94(3), 83(2) 

Os(N-l)-Os(N)-Ceq 160(2) 154(2), 97(2) 158(2) 

Os(N+l)-Os(N)-Ceq 101(2) 155(2), 96(2) 99(2) 

Os(N-l)-Os(N)-Ccarbene 98(1) - 98(2) 

Os(N+l)-Os(N)-Ccarbene 156(2) ---- 157(2) 

Cax-Os(N)-Ceq 92(3), 87(2) 90(2), 91(3), 92(3) 91(3), 92(2) 

Cax"G^(N)-Ccarbene 89(2), 86(2) -  — —  - 92(3), 88(2) 

Cax-Os(N)-Cax 174(2) 177(3) 177(3) 

Ceq-Os(N)-Ceq —  109(3) 

Ceq-Os(N)-Ccarbene 102(2) 103(3) 

Oax-Cax-Os(N) 177(6), 172(5) 175(6), 178(5) 171(6), 170(5) 

Oeq-Ceq-Os(N) 175(5) 174(5), 173(6) 179(6) 

®carbene"^carbene"®^(^) 127(4), 128(3) —  —  —  —  129(4), 126 (4) 

®For the dioxycarbene groups, O-C-0, 104(4), 105(5); C-O-C, 118(4), 
108(5), 115(5), 112(5); C-C-0, 111(5), 97(6), 106(7), 103(6). 

^ All bond distances noted below were restrained to the target 
distances given: Os-CO, 1.88 Â; C-0, in CO groups, 1.16 Â; C-0 at the 
carbene carbon 1.42 Â; and C-C distance in the carbene ligand, 1.54 Â. 
The standard deviations were all set to 0.013 Â. 

^ N refers to the cyclic permutation 1, 2, 3, (note that for N=l, "N-
1" is 3; for N=3, "N+1" is 1). 
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Structure of 0s3(C0)iq(=CÔCH2CH^)2, II 

The solid state structure of compound II determined by X-ray 

diffraction is shown in Fig, 1. The basic coordination geometry is that 

of Os3(CO)i2 [22) with the two cyclic dioxycarbene ligands occupying two 

equatorial carbonyl coordination sites. Each of the Os atoms has a 

distorted octahedral coordination geometry. All of the carbonyl ligands 

are terminal and nearly linear, Os-C-0, 170-174°. The three metal atoms 

define a triangle with an average Os-Os bond distance of 2.871 Â; this 

value is very close to the mean metal-metal distance (2.877(3) k) [22] in 

0s3(C0)j2« In II, the shortest Os-Os bond (2.854(3) Â) is between Osl and 

Os3, which are also the atoms that bear the cyclic dioxycarbene ligands. 

The shortest Os-Os distance in OsgfCOjiQfNCMejg [15] is also between the 

Os atoms that have the coordinated MeCN ligands. As in Os3(CO)jQ(s-trans-

C^Hg) (191 and OsgfCOiiifPfOMe)]) [17| where the non-carbonyl ligands 

occupy the equatorial positions, the carbene ligands in II are also 

equatorial. The C3O2 carbene rings are nearly planar with the maximum 

deviation from planarity being 0.068 Â. 

Both of the carbene ligands in II are terminal. Bridge bonding is 

observed in all other previously reported cluster-bound alkylidene (=CR2) 

complexes, e.g., (ii2~C0)(ii2~CH2)0s3(C0)j^Q [23] and (w2"'^)2^^2~^^2^'^^3~ 

(CO)iQ (24) and in some trimetal clusters with the =CR(OR') ligand, e.g., 

[(u-H)Os3(CO)io(y-CHOMe)-] [25] and Pt2W(C0)g(PR3)2[w-C(0Me)(Ph)] [26]; 

however, others have a terminal =CR(OR') ligand, as in 0s3[l-Ti^-C(0Me)-

(Me)][1.2-y-H;1.2-y-0=C(Me)](C0)g (27,28). Bis(alkoxy) (=C(0R)2) and 

bis(thioalkoxy) (=C(SR)2) carbene ligands are generally terminal in 
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Figure 1. ORTEP drawing of Os3(CO)jo(=cÔCH^CH^)2, II 
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polynuclear complexes, e.g., (n3-S)2Fe3(C0)g(=CSCH=CHS) [29], (w-HjOsg-

(C0)g(nl-C(0Me)2)(w3-CPh) [14) and RU3(CO)io(=CÔCH^CH^)2 [4j, but there 

are exceptions, e.g., [Fe3(C0)g(u3-CSCH2CH2S)(p3-S)] [30a] and others 

[30b]. 

An ORTEP [31] drawing of II in Figure 2 shows an explicit clockwise 

rotation for all groups of ligands when looking into the center of the 

osmium ring; the degrees of rotation are given in Table 6. A similar 

rotation is seen in other OS3 clusters, [Os3(CO)io(trans-CF3(H)C=C(H)-

CF3)(Br)]- [32], [Os3(CO)g(trans-CF3(H)C=C(H)CF3)(u-Br)]" [32], and 

Os3(CO)ii[P(OCH3)3] [17], as calculated from data in the references 

(entries D, E, and F in Table 6). On the other hand, there is no evidence 

for such a rotation in [0S3(C0)ii(NCMe)] [15], [Os3(CO)iQ(NCMe)2] [15], 

H20s3(C0)ii [22], and 053(00)12 (22]. It is not clear what factors lead 

to these rotational distortions in some OS3 clusters and not in others. 

Reactions of Fe(C0)4(=CÔCH^CH^), III 

The complex, Fe(C0)4(=CÔCH^CH^), is not stable in CH2CI2 or THF even 

under N2; about 30% of it decomposes in 18 h to give Fe(C0)g and a brown 

precipitate which is probably Fe. Previously [4] it was noted that solid 

III, when heated, evolves CO2 which was detected by the precipitation of 

CaC03 as the gas was passed through an aqueous solution of Ca(0H)2. We 

have now detected both CO2 and ethylene as products of this decomposition 

(eq. 3) when a CH2CI2 solution of III is injected into a GC-MS 
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Figure 2. Perspective view of Os^fCOIiot-COCHzCHzO);. II. showing the clockwise rotation of the 

ligands around the pseudo-octahedral Os atoms 
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Table 6. Comparison of ligand rotation* values in Os3(CO)jq(=£ÔCH^CH^)2, 

I II III IV 

A: 22.2 (Cll) 6.3 (C13) 9.5 (CIO) 11.3 (C12) 
B: 20.4 (C22) 8.3 (C23) 7.5 (21) 8.2 (C24) 
C: 25.7 (C31) 12.5 (C32) 10.0 (C3G) 13.5 (C33) 
D: 28.1 8.3 7.7 6.0 
E: 8.4 5.9 4.3 0.9 
F: 4.3,14.5,8.3 4.4,4.1,3.3 2.2,0.6,1.7 0.5,1.1,-1.0 
G: 2.8,3.0,2.6 0.9,0.6,0.5 0.6,1.4,0.7 0.6.1.0,2.9 
H: -4.4,7.2,5.1 1.2,-0.9,-0.7 -0.3,-1.3,0.5 -0.8,2.2,2.4 
I: 5.9,5.2,-0.8 4.0,0.5,0.3 2.8,3.4,-0.4 3.7,3.1,0.4 
J: 7.6 1.2,2.6 2.8,1.6,-0.6 5.8,1.2,0.5 5.7,-0.1,2.5 

I: Vector in plane of osmium atoms, arbitrary reference of 0°. 
II: Vector perpendicular to plane, 90" anticlockwise rotation. 
Ill: Vector in plane, 180° rotation. 
IV: Vector perpendicular to plane, 90" clockwise rotation. 

A,B,C: Atoms on Osl, 0s2, and Os3, this structure. 
D: Atoms on Os3 in (0S3(C0)j^Q(trans-CFo(H)C=C(H)CF3)Brl" in [32]. 
E: Atoms on Osg in [0s3(C0)g(trans-CF3(H)C=C(H)CF3)(w-Br)]" in 

[32]. The structure was inverted to give the clockwise rotation 
of the other structures. 

F: Atoms on Osl, 0s2, and 0s3 in 0s3(C0),,[P(0CH3)3] in [17]. 
G: Atoms on Osl, 0s2, and Os3 in H20So(C0)j^i in [22]. 
H: Atoms on Osl, 0s2, and Os3 in 0^3(60)12 m [22]. 
I: Atoms on Osl, 0s2, and 0s3 in Os3(CO)ii(NCMe) in [15]. 
J: Atoms on Osl, 0s2, and 0s3 in Os3(CO)^o(NCMe)2 in [15]. 

^Rotation values in degrees rotated from the vectors parallel and 
perpendicular to the metal atoms plane as given by the headings I, II, 
III, and IV. 
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I I VHrnVIm 
Fe(C0)4(=C0CH2CH20) —CO^ + CgH, + Fe(CO)g + Fe + ... (3) 

instrument. It is not known whether or not the free carbene cCOCH^CH^ is 

an intermediate in this reaction; however, this carbene, previously 

suggested [33] as an intermediate in the decomposition of the nonborna-

dienone ketal, decomposes to CO2 and C^H*. We considered the possibility 

that decomposition could occur by loss of from III, leaving a CO2 

complex which might react with a different olefin to give a new dioxy-

carbene complex. However, refluxing (83°C) III in cyclohexene (eq 4) did 

not give the known stable dioxycarbene complex IV [34]; only 

decomposition of III (eq 3) occurred. 

The reaction of Fe(CO)^(=cÔCH^CH^) with 71.5 atm of H2 gas at 200°C 

in the absence of CO gave a 27% yield of 1,3-dioxolane (eq 5). However, 

no reaction 

+ CgH," (4) 

200°C, decalin 
autoclave Fe ( 5 )  
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In the presence of 34 atm of CO, this reaction did not produce any 

detectable 1,3-dioxolane. A possible interpretation of this result is 

loss of CO from Fe(CO)^(=CÔCHpCH^) to give Fe(C0)3(=cÔCH^CH^), which 

oxidatively adds to form an intermediate H2Fe(C0)g(=cÔCH^CH^) which 

transfers a H ligand to the carbene C and reductively eliminates 1,3-

dioxolane. In this mechanism, CO inhibits the addition of Hg and the 

eventual formation of 1,3-dioxolane. 

The reaction of 5 equivalents of MegNO with Fe(CO)^(=CcicH^CH^) at 

-78°C in CH3CN produces ethylene carbonate, 0=CÔCH^CH^, in 24% yield. If 

only 3 equivalents of Me^NO is used, the reaction is not complete even 

after one day. Also in CHgClg solvent, the MegNO reaction does not go to 

completion. It is possible that Me^NO oxidation of the Fe, rather than 

the carbene, leads to the low yield (24%) of ethylene carbonate. The 

formation of ethylene carbonate may occur by initial attack of Me^NO on 

the carbene carbon atom as indicated by eq 6. Since a variety of other 

that the initial step in the hydrogénation of Fe(C0)4(=C0CH2CH20) is the 

I I Me^NO 
FefCOj^fcCOCHgCHgO) — > (OC) 

(6) 

CH.CN 
> Fe(C0)^(NMe3) —^—> Fe(CO),(NCMe) 

+ 
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oxidizing agents including oxygen [35], pyridine N-oxide [36), dimethyl 

sulfoxide [371 and OHT/Brg [38] have been reacted with carbene complexes 

to give organic products with C=0 groups, several similar reactions were 

tried with III. Bubbling Og through a CH2C12 solution of FefCO)^-

(=C0CH2CH20) at room temperature for 18 h gave only a low yield of 

ethylene carbonate, Fe(CO)g and a brown solid. A THF solution of 

Fe(C0)4(=C0CH2CH20) and excess (CH3)2S0 were refluxed for 4 h, but no 

ethylene carbonate was produced. Likewise, successive treatment of III 

with hydroxide and bromine in methanol did not give any of the carbonate. 

Ultraviolet photolysis (254 nm) of III with an equimolar amount of PPhg in 

THF gives both FefCOXqtPPhg) and Fe(C0)3(PPh3)2. Similarly, refluxing I 

with PEtg in toluene gives OsgfCOiiifPEtg). Efforts to characterize the 

organic products formed in these reactions were not successful, but it is 

possible that the carbene ligand is lost as CO2 and C2H4. A similar 

replacement of the carbene ligand was observed in reactions of RefCO)^-

(Br)(=CÔCH^CH^) with bipyridine or o-phenanthroline [39]. 

Catalytic Reactions of Ethylene Oxide, CO and H2 

Since ethylene oxide reacts with FefCO)^ in the presence of Br" to 

form III (eq 1), and III reacts with H2 to form l,3-d1oxolane (eq 5), It 

seems possible that Fe(CO)g and Br" might catalyze the reaction of 

ethylene oxide, CO, and H2 to form 1,3-dloxolane. Unfortunately, the 

hydrogénation step in this sequence is inhibited by CO (see above); so it 

appears that the Fe(CO)g/Br" catalyst system will not be successful. 

However, in general, it seems possible that metals or metal complexes 
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could catalyze the reaction of ethylene oxide, CO, and H2 to form 1,3-

dloxolane or other products derived from the dioxycarbene Intermediate, 

III (Scheme 1). To explore this possibility, we examined several 

reactions using a metal catalyst with NaCl In CICH2CH2OH solvent as shown 

in Table 7. In a control experiment using no metal catalyst, but all 

other conditions being the same as in the catalyzed reactions, a 28% yield 

of 1,4-dioxane was obtained, probably from the dimerization of ethylene 

oxide. The cyclodimerization of ethylene oxide to 1,4-dioxane is possibly 

catalyzed by NaCl; CI" attack may open the ethylene oxide ring to give the 

alkoxide which would add to another ethylene oxide and then cyclize to 

form 1,4-dioxane; it is known that halide ions promote ethylene oxide ring 

opening in certain organic reactions [401. In the presence of all the 

metal catalysts, not only was 1,4-dioxane formation observed but also 

2-methyl-l,3-d1oxolane. With 10% Pt/C and PdCl2, 2-ethyl-l,3-d1oxolane 

was also identified as a product. These three were the only products that 

were observed in the GC-MS spectra of the reaction mixtures. In none of 

the reactions was 1,3-dloxolane observed as a product. It is, however. 

M + CO > hW:50 

Scheme 1 
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Table 7. Reaction of ethylene oxide (40 mmol), CO (20.4 atm) and Ho 
(20.4 atm) in the presence of NaCl (0.50 mmol) and catalyst 
(0.040 mmol) at 180°C in 2 ml of C1CH2CH20H for 11 h 

Catalyst Products® 

10% Pd/C A, B 

10% Pt/C A, B, C 

10% Pd/AlgO] A, B 

5% Rh/cb A. B 

PdCl2 A. B, C 

PdCl2(PPh3)2 A. B 

c A 

, - ̂  H,C wO 
®A is 1,4-dioxane , ^ ; B is 2-methyl-l,3-d1oxolane, ^ * 

•>o-

^The yields of A and B were 17% and 50%, respectively. 

^The yield of A using no metal catalyst was 28%. 

Et 
C is 2-ethyl-l,3-dioxolane, 

H 
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possible that there are other non-volatile products. It is not clear how 

2-methyl-l,3-dioxolane is formed; however, it has been found [411 as a by­

product in the polymerization of ethylene oxide catalyzed by SnCl^ (92% 

dioxane and 8% 2-methyl-l,3-dioxolane are the volatile products in 

addition to the ethylene oxide polymer). A possible mechanism might 

involve isomerization of ethylene oxide to CH3CHO, known to occur in the 

presence of MnBrg [42], followed by reaction with ethylene oxide to give 

2-methyl-l,3-dioxolane (43). A possible mechanism for the formation of 2-

ethyl-1,3-di0x0lane might proceed by the hydroformylation (Hp and CO) 

[44,451 of ethylene (generated by the decomposition of ethylene oxide) to 

give CHgCHgCHO which reacts with ethylene oxide to give 2-ethyl-l,3-

dioxolane [43]. 

Although we are not aware of other attempts to catalyze reactions of 

ethylene oxide, CO, and Hg, epoxides are known to be deoxygenated to 

olefins and COg by [RhfCOlgCljg [46], Co2(C0)g [47], Mo(CO)g [481, and 

Fe(C0)5 [49]. Also, the reaction of ethylene oxide with CO to give 

8-lactones is catalyzed by RhCl(C0)(PPh3)2 [50]. 

Supplementary material 

Listing of anisotropic thermal parameters, hydrogen atom positions, 

and calculated and observed structure factors (6 pages) have been 

deposited with the Editor-in-Chief. 
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Table SI. Hydrogen atom coordinates® (fractional x 10^) for 
Os3(C0)io(C3H4O2)2* II 

Atom X y z 

H34 4472. 3089. 2967. 

H35 4877. 2243. 3602. 

H36 3112. 2948. 3385. 

H37 3576. 2273. 4149. 

H38 1413. 1626. -1517. 

H39 1021. 2631. -1113. 

H40 -153. 2003. -679. 

H41 276. 986. 

00 CM O
 

r-
H

 1 

, ®The hydrogen atom parameters were calculated and not refined; L)(Â^ x 
lOM) = 63.3. 
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Table S2. Anisotropic thermal parameters* (Â^ x 10^) for 
OSgfCOiiofCgHgOglg, H 

ATOM Ull U22 U33 U12 Ul3 U23 

Osl 74.(1) 56.(1) 33.(1) -8.(1) -7.(1) 0.(1) 

Os2 70.(1) 50.(1) 38.(1) - 3 . ( 1 )  2.(1) -7.(1) 

Os3 65.(1) 52.(1) 39.(1) -1.(1) 3 . ( 1 )  - 3 . ( 1 )  

033 101.(30) 162.(44) 75.(34) -17.(32) 14.(24) -10.(38) 

032 151.(39) 72.(28) 69.(35) -21.(25) 34.(29) -27.(28) 

031 174.(45) 73.(31) 78.(37) 52.(27) -13.(30) 4.(29) 

021 81.(24) 72.(25) 79.(33) 37.(20) 44.(22) 20.(25) 

023 176.(44) 67.(30) 105.(44) -15.(27) 10.(35) -52.(33) 

022 181.(49) 198.(57) 67.(35) 11.(42) -24.(35) -35.(46) 

024 116.(30) 72.(26) 69.(30) -23.(22) 35.(24) -35.(26) 

012 113.(31) 165.(44) 61.(31) -28.(28) 4.(26) -8.(32) 

Oil 124.(30) 64.(25) 82.(31) 4.(26) -31.(26) -5.(29) 

013 80.(24) 105.(32) 66.(28) 0.(21) 17.(23) -24.(27) 

®The form of the temperature factor is exp(-2nz jh^hja*aj). 
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1 - 0 10 13 261 -277 
K L P« Pe 12 0 *00 -433 
0 2 136 131 12 1 221 289 
0 4 163 -187 12 3 241 232 
0 6 336 -332 12 4 130 146 
0 8 608 393 12 3 143 137 
0 10 223 223 12 9 133 -136 
0 12 243 233 12 10 214 -228 
0 14 240 -266 14 1 273 310 
0 16 342 336 14 3 166 179 
2 0 830 831 14 8 173 169 

Table S3. Observed and calculated structure factors for 
0S3(G0)iQ(C2H402)2, H 

3 à 219 -216 0 10 133 -1*6 S 10 *02 40* 
s 12 233 249 0 12 230 22* 3 1* 
3 14 130 -104 0 14 186 138 6 0 
6 1 446 463 0 16 180 -183 6 1 
6 2 129 -120 1 1 487 483 6 2 
6 3 334 293 1 2 303 -291 6 3 
6 4 313 -484 1 3 183 -186 6 3 
6 3 770 -721 1 4 118 118 6 6 
6 9 190 142 1 3 314 283 6 7 
6 11 170 -173 1 6 203 204 6 13 

_ . _ . 6 12 163 143 1 7 302 486 6 13 
2 1 376 -620 6 13 113 -140 1 8 212 -193 7 0 
2 4 166 169 a - 1 .7 1 112 121 1 9 339 -329 7 1 
2 3 422 416 K I. Fo Fc 7 3 149 -124 1 13 137 -136 7 2 
2 7 363 344 0 2 1147-1103 7 4 231 -212 1 13 213 -193 7 3 122 109 
2 8 631 -619 0 4 296 -291 7 11 114 123 1 17 219 223 7 6 
2 9 338 302 0 6 296 -291 7 12 138 164 2 0 360 -377 7 9 207 208 
2 11 497 313 0 8 292 278 . 7 13 116 -101 2 1 348 341 7 10 
2 12 180 -173 0 10 184 173 8 1 187 203 2 2 226 -226 7 11 
2 13 300 -296 0 12 237 -239 8 2 234 -260 2 3 197 194 7 14 
2 13 142 133 0 14 403 413 8 3 343 333 2 4 182 -184 8 0 
2 16 339 343 0 16 164 198 8 4 347 -317 2 3 142 -121 8 2 138 -160 
4 .1 234 -261 1 1 129 -126 8 3 134 -119 2 6 170 170 8 3 
4 3 363 374 1 3 134 136 8 6 260 234 2 7 370 343 8 4 
4 4 497 310 1 3 279 -273 8 7 206 -194 2 8 430 444 8 3 
4 3 393 *08 1 7 297 283 8 8 128 102 2 9 132 -163 8 6 
4 6 194 176 1 9 127 130 8 9 336 -344 2 10 171 177 8 7 
4 7 273 289 1 13 176 133 8 10 138 -144 2 11 332 333 8 8 
4 8 634 -663 1 13 134 -132 8 11 276 -268 2 12 132 121 8 11 
4 9 297 301 2 1 442 -416 8 13 123 136 2 13 238 232 8 13 
4 10 444 -436 2 2 607 332 9.2 116 -121 2 16 208 -231 9 0 
4 11 324 -324 2 3 429 *07 9 3 171 -166 3 0 173 173 9 1 
* 12 131 -100 2 3 260 223 9 3 142 149 3 1 283 277 9 2 
4 14 282 287 2 6 499 -460 10 1 86 87 3 2 361 332 9 3 
4 16 193 227 2 9 498 -463 10 2 223 236 3 3 129 130 9 6 
6 0 172 167 2 10 266 292 10 3 226 219 3 4 163 131 9 7 
6 2 328 336 2 11 337 -333 10 4 188 -172 3 6 323 319 9 9 
6 3 804 810 2 12 140 101 10 3 187 193 3 8 329 -316 9 11 
6 3 346 333 2 13 331 338 10 7 242 -232 3 9 274 -238 10 0 
6 6 242 -263 2 14 381 376 10 8 138 -130 3 10 240 222 10 1 
6 7 337 -346 2 13 117 133 10 9 437 -413 3 11 143 137 10 3 
6 9 186 172 3 1 284 -273 10 11 222 213 3 13 168 -138 10 7 
8 0 131 148 3 3 148 143 10 12 226 212 3 16 124 124 10 10 
8 1 172 -182 3 4 489 -460 11 3 134 174 4 0 118 -130 10 11 
8 2 318 342 3 7 138 127 12 1 309 347 4 2 186 -178 10 13 
8 3 363 364 3 11 131 -106 12 2 310 349 4 3 340 -320 11 0 
8 4 308 -287 3 12 138 134 12 7 203 -207 * * 313 -493 11 1 
8 3 361 339 * 1 317 303 12 8 172 -164 * 3 120 -11* 11 3 
8 6 339 -363 * 2 223 208 1* 1 279 310 * 6 102 -19 11 7 
8 8 304 304 4 3 333 308 14. 3 130 -119 4 8 *80 470 11 8 
8 11 314 -321 4 3 366 -323 14 6 138 161 4 10 437 434 11 9 
8 13 237 -234 4 6 734 -690 1* 7 186 -173 * 11 179 162 12 0 
8 1* 102 -109 * 8 296 -311 * 14 263 -269 12 1 

10 0 388 -412 4 9 129 -131 8. 2 * 16 168 -186 12 3 
10 2 169 164 4 10 318 283 K I. Fo Pe 3 0 349 371 12 * 
10 3 274 263 4 11 297 -269 0 0 960-1164 3 1 196 178 12 3 
10 7 366 381 4 12 424 *21 0 2 338 -330 3 3 308 293 12 6 
10 8 167 180 * 13 19* 202 0 * 31* 306 3 3 1*0 133 12 10 
10 10 272 -286 * 14 231 233 0 6 330 340 3 6 231 223 13 0 
10 11 281 -302 3 2 130 131 0 8 377 372 3 8 181 -188 13 2 
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Table S3. Continued 

13 4 106 -123 3 4 468 446 14 1 186 -196 3 3 140 -124 12 3 210 206. 
13 8 224 217 3 3 207 -200 14 3 172 167 S 8 169 -144 12 4 112 113 
14 1 172 -176 3 7 119 -118 14 7 102 73 S 10 419 -419 12 S 128 130 
14 3 218 226 3 8 227 242 13 1 116 -123 S 14 208 213 12 6 138 148 
13 0 146 -169 3 12 483 -472 13 2 110 113 3 13 117 109 12 8 103 -116 
13 1 79 •64 6 1 362 •338 6 0 326 344 13 4 140 143 

6 2 191 186 B ' • 4 6 1 481 473 13 7 110 98 
B - 3 6 3 112 118 K L Po fe 6 2 87 84 13 8 232 •240 

K L Po re 6 4 206 200 0 2 439 437 6 3 369 368 14 3 214 219 
0 2 396 393 6 3 287 283 0 4 324 •329 6 3 82 39 13 0 140 138 
0 4 713 713 6 7 233 229 0 6 373 •374 6 7 138 131 13 1 79 83 
0 6 109 -96 6 12 112 -62 0 8 210 226 6 8 230 -210 
0 8 234 -233 6 13 206 179 0 10 139 -139 6 9 304 -300 a - 3 
0 16 243 -242 7 1 131 •123 1 0 166 172 6 11 123 129 K L Po Pc 
1 1 193 200 7 2 203 -196 1 1 128 -139 6 IS 223 -229 0 2 103 -109 
1 2 217 219 7 3 306 299 1 4 196 -191 7 0 133 -129 0 4 686 -734 
1 3 133 -129 7 4 378 366 1 3 269 -261 7 1 239 231 0 6 338 339 
1 4 218 222 7 8 200 199 1 6 234 -249 7 2 231 237 0 10 131 -127 
1 3 396 396 7 9 192 -181 1 7 638 -609 7 3 84 94 0 12 272 294 
1 6 227 221 7 11 219 223 1 8 137 133 7 4 133 128 0 16 191 197 
I 7 447 -444 7 12 299 -306 1 9 210 216 7 3 117 -120 1 1 87 -91 
1 8 162 •140 7 13 188 194 1 11 170 167 7 6 149 -143 1 2 230 239 
1 9 381 -371 8 1 189 -196 1 13 239 261 7 7 93 -107 1 3 179 •184 
1 13 134 -139 8 2 334 366 1 14 111 •106 7 9 186 •183 1 4 87 -82 
1 13 312 328 8 3 129 •110 1 13 114 121 7 10 338 -336 1 .) 172 -168 
1 16 127 -106 8 7 173 173 2 0 93 113 7 11 267 263 1 i 193 196 
2 1 71 69 8 9 276 263 2 2 404 406 7 14 135 128 1 7 273 282 
2 2 86 70 8 12 144 144 2 3 3S9 -347 8 0 466 476 1 8 191 183 
2 3 133 -126 8 14 lis -72 2 3 142 94 8 1 164 170 1 9 367 389 
2 4 622 609 9 1 99 -117 2 6 291 -313 8 3 106 103 1 11 210 193 
2 3 424 -409 9 2 216 226 2 7 414 413 8 4 132 -149 1 12 138 •141 
2 6 282 271 9 3 317 319 2 10 382 -376 8 S 167 169 1 15 233 •236 
2 8 123 134 9 4 338 339 2 11 162 -140 8 7 264 230 2 4 333 323 
2 9 348 337 9 3 136 -ISO 2 13 174 -132 8 8 137 -122 2 S 349 331 
2 12 292 -283 9 7 108 94 3 0 102 -109 8 9 188 -144 2 7 184 •178 
2 14 138 -137 9 11 193 -209 3 1 449 -434 8 10 204 204 2 8 117 •123 
2 13 219 -213 9 13 173 181 3 2 442 436 8 11 112 -84 2 ' 9 189 -199 
2 16 118 -81 10 1 75 -63 3 3 437 -432 8 13 121 •140 2 12 311 333 
3 1 367 333 10 3 228 •227 3 4 282 -284 8 14 148 •139 2 15 139 176 
3 3 333 -336 10 4 98 -86 3 3 194 -133 9 0 314 316 2 16 113 103 
3 4 783 764 10 3 ISO 133 3 6 333 -339 9 1 248 252 3 1 333 -377 
3 6 269 .264 10 7 133 172 3 8 134 136 9 2 193 190 3 2 174 -173 
3 7 264 -267 10 9 337 332 3 9 173 162 9 4 162 -188 3 4 286 •286 
3 10 140 141 10 ; 11 149 143 3 IS 190 203 9 S 127 •US 3 3 263 276 
3 11 143 133 11 2 184 173 4 0 134 -141 9 6 284 ^274 3 6 87 74 
3 12 180 -176 11 3 108 124 4 1 349 379 9 9 163 ^171 3 ? 277 263 
3 13 268 -246 11 4 90 80 4 2 183 171 9 : 11 128 144 3 8 104 97 
3 16 147 -164 11 3 317 -313 4 4 331 314 10 0 192 195 3 13 118 132 
4 1 404 . •392 11 6 132 119 4 7 230 240 10 2 149 ^163 4 1 232 221 
4 2 161 -166 11 7 122 109 4 8 261 -233 10 3 230 224 4 2 106 106 
4 4 192 193 11 9 140 126 4 9. 270 -261 10 6 139 140 4 3 289 -289 
4 6 423 419 12 1 202 -203 4 10 413 -414 10 7 240 242 ,4 4 220 • •228 
4 7 169 160 12 2 138 -137 4 14 182 188 10 8 162 •Ul 4 3 299 299 
4 8 326 318 12 4 163 -137 4 13 ISO -169 10 11 188 -189 4 a 136 -147 
4 9 164 167 12 3 128 142 4 16 126 87 11 0 283 303 4 7 264 259 
4 10 223 -202 12 6 139 114 S 0 281 -282 11 2 86 98 4 8 190 -189 
4 12 383 -380 12 7 128 127 3 1 207 -212 11 3 212 -209 4 10 103 91 
4 14 144 -142 12 8 104 96 3 2 268 271 11 7 220 220 4 11 183 171 
S 1 293 297 13 4 121 -100 3 3 379 -386 11 8 173 -136 4 12 281 276 
S 2 367 . 330 13 6 291 264 3 4 193 204 12 2 133 -160 4 13 212 -219 
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72 

* IS 138 167 
s 1 343 333 
9 2 141 146 
S * 171 -163 
3 3 228 230 
S 6 346 -346 
3 7 170 163 
3 8 227 238 
S 10 166 162 
5 12 307 307 
6 1 449 434 
6 2 214 -211 
6 3 248 -231 
& 3 130 139 
& & 217 -200 
6 7 248 -261 
6 11 143 147 
6 13 241 -243 
6 14 106 118 
7 1 117 82 
7 3 214 214 
7 4 166 —164 
7 3 213 -203 
7 6 220 213 
7 8 109 -133 
7 9 283 283 
7 10 169 149 
7 11 162 162 
7 12 193 203 
7 13 123 -109 
8 1 169 173 
8 2 280 -289 
8 4 121 117 
8 3 162 133 
8 6 104 -96 
8 7 203 -183 
8 8 123 126 
8 9 143 -131 
8 12 186 -188 
9 2 391 -396 
9 3 101 -101 
9 4 337 -337 

10 2 103 -116 
10 3 140 124 
10 4 233 238 
10 6 208 -214 
10 7 104 -103 
10 9 187 -186 
10 11 106 -98 
10 12 123 -133 
11 1 124 -117 
11 2 203 -210 
11 3 87 76 
11 4 190 -191 
11 3 168 172 
11 6 94 -98 
11 9 133 -133 
12 1 73 86 
12 3 141 137 
12 4 194 201 

3 172 -163 
6 136 -136 
2 76 37 
6 203 -214 
1 80 79 
3 133 141 
3 187 -186 

a - 6 
K u Po Pc 
0 0 193 200 
0 2 344 -366 
0 6 338 341 
0 8 261 -269 
0 10 272 291 
1 0 389 -424 
1 1 212 -221 
1 2 99 -112 
1 3 138 137 
1 4 193 190 
1 3 423 430 
1 6 172 173 
1 7 219 238 
1 9 171 181 
1 10 163 -136 
1 11 389 -397 
1 13 318 -293 
1 14 123 142 
2 1 149 -139 
2 2 246 239 
2 3 87 93 
2 6 199 198 
2 7 230 -243 
2 8 112 -94 
2 9 169 166 
2 10 303 302 
3 0 346 -368 
3 1 138 131 
3 3 378 386 
3 4 91 100 
3 3 233 238 
3 6 186 184 
3 7 183 -193 
3 8 141 126 
3 10 149 -147 
3 14 132 130 
3 13 124 -140 
4 1 321 -317 
4 7 203 -198 
4 9 244 244 
4 10 178 189 
4 11 107 -116 
4 13 113 123 
3 0 147 -129 
3 1 166 172 
S 3 363 370 
3 4 290 -279 
3 3 198 198 
5 6 133 -144 
3 8 478 474 

3 10 212 234 
3 14 136 -137 
6 0 231 -229 
6 1 333 -344 
6 7 176 -184 
6 8 110 114 
6 9 246 229 
7 0 207 -204 
7 1 87 -87 
7 2 88 -71 
7 3 107 -102 
7 4 103 -119 
7 3 99 113 
7 7 330 339 
7 8 393 387 
7 10 178 166 
7 11 161 -169 
7 13 146 -162 
8 0 280 -298 
8 1 163 -136 
8 3 98 93 
8 7 173 -174 
8 8 162 133 
8 9 102 96 
8 10 126 -136 
9 0 320 -346 
9 2 194 -190 
9 3 128 -133 
9 4 189 189 
9 6 233 228 
9 7 187 179 
9 11 93 -33 
9 12 93 68 

10 0 170 -160 
10 2 163 136 
10 3 100 -91 
10 6 116 -112 
10 7 84 —61 
10 8 173 132 
10 10 102 -108 
11 0 230 -243 
11 1 219 222 
11 2 136 -137 
11 3 88 94 
11 6 123 122 
12 2 77 90 
12 3 128 -116 
12 8 120 116 
13 0 101 89 
13 2 103 -103 
13 4 133 -134 
13 S 86 -88 
14 3 141 -136 

a - 7 
K L Po Pc 
0 4 236 248 
0 12 118 -114 
1 2 330 372 
1 3 476 487 

1 131 123 
1 110 -136 
1 167 -179 
1 397 -412 
1 393 -401 
1 206 203 
1 271 281 
1 119 101 
2 134 133 
2 89 -86 
2 91 80 
2 108 -96 
3 409 422 
3 433 436 
3 177 171 
3 470 -463 
3 99 110 
3 133 -162 
3 166 -173 
3 129 -131 
3 197 197 
3 137 -136 
4 141 162 
4 117 -127 
4 88 93 
3 338 377 
3 179 -181 
3 219 -224 
3 331 349 
3 172 -180 
3 172 139 
3 233 -246 
3 97 -98 
3 212 -228 
6 93 -93 
6 101 94 
6 98 106 
6 93 -84 
6 110 116 
6 92 86 
7 163 163 
7 349 331 
7 410 402 
7 146 -161 
7 291 -289 
7 184 -183 
7 101 -129 

78 -83 
79 80 

9 406 411 
9 113 -123 
9 238 249 
9 268 264 
9 93 -92 
9 106 -93 
9 119 -117 

10 77 -38 
10 87 -76 
11 174 180 
11 160 163 

1 3 194 -196 
1 4 231 228 
1 9 116 126 
2 3 84 63 
2 4 73 -62 
3 2 131 -121 
3 3 76 •93 

13 4 163 138 

B . 8 
K L Po Pc 
0 0 111 -116 
1 0 363 403 
1 1 293 317 
1 3 190 -199 
1 4 189 -198 
1 3 343 -372 
1 6 94 -89 
1 7 120 -138 
1 9 220 -234 
1 10 123 168 
1 11 392 402 
1 13 218 232 
1 14 130 -130 
2 0 86 94 
2 14 93 -33 
3 0 323 331 
3 1 93 -106 
3 3 476 -499 
3 4 116 -114 
3 3 238 233 
3 7 218 213 
3 8 208 -217 
3 9 83 33 

10 217 206 
3 14 93 -98 
4 2 68 41 
3 0 220 231 
3 1 186 -184 
3 2 113 -88 
3 3 319 -318 
3 4 246 242 
3 3 162 -168 
3 6 161 162 
3 8 467 -464 
7 0 302 300 
7 1 74 —68 
7 3 164 148 
7 4 163 168 
7 3 126 -122 
7 7 342 -330 
7 8 370 -373 
7 11 109 110 

3 73 33 
9 0 471 464 
9 1 121 -126 
9 2 166 138 
9 3 132 136 
9 4 123 -132 
9 6 193 -193 
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Table S3. Continued 

9 7 223 -225 7 10 110 128 7 4 83 .86 6 7 128 -130 B - 13 
9 8 97 -104 8 2 141 141 7 5 86 95 7 3 97 84 K L Fo Fe 
9 9 131 138 8 5 111 -102 7 7 174 171 7 4 127 142 0 2 256 240 

11 0 172 174 9 2 275 -269 7 8 174 170 7 6 79 82 0 4 167 177 
11 1 217 -211 9 4 217 -212 7 10 116 118 8 1 80 74 1 1 103 -110 
11 2 177 170 9 5 174 -167 8 0 231 214 8 2 183 -180 1 4 75 82 
11 « 131 -146 9 7 93 82 8 1 97 98 8 5 104 89 1 5 113 -120 
13 0 90 -114 9 8 95 93 8 2 80 -81 8 7 77 -77 1 7 144 123 
13 2 133 143 9 9 110 89 8 7 120 117 9 2 170 145 2 1 96 90 13 2 

10 4 124 -129 8 9 78 •68 9 3 73 80 2 2 89 84 
H - 9 11 1 123 -lis 9 0 257 -234 9 4 162 150 2 3 87 -83 

K L Pe re 11 2 112 -113 9 2 160 -149 10 3 98 84 2 4 90 80 
0 4 263 278 11 3 133 128 9 4 105 102 2 5 106 -110 
0 6 182 -194 11 4 192 -191 9 6 128 138 • - 12 3 1 125 .119 
0 12 90 -92 9 7 107 101 K L Fo Pc 3 4 141 -137 
1 1 85 -76 H • 10 9 8 79 65 0 0 190 -205 3 6 77 65 
1 2 229 -233 K L Fo Pe 10 0 116 108 0 2 182 -186 3 7 75 67 
1 3 337 -361 0 2 270 287 10 2 86 -100 0 4 162 150 4 1 83 -77 
1 4 89 -86 0 4 168 -166 10 5 73 60 0 6 202 194 4 2 85 -77 
1 7 96 100 0 6 252 -264 10 6 111 102 0 8 86 -65 4 6 165 161 
1 8 106 113 0 8 149 149 11 0 145 -136 1 1 128 -139 5 2 94 84 
1 9 313 337 0 10 103 -70 11 1 77 64 1 2 92 74 5 4 141 -132 
1 11 224 233 1 0 191 -192 11 2 134 -126 1 5 106 93 6 1 178 .165 
1 13 177 -193 1 4 141 154 1 7 188 -200 6 2 68 58 
2 4 192 195 1 5 236 232 B - 11 1 8 84 50 7 3 92 -90 
2 S 194 -199 1 6 80 90 K L Fo Fe 1 9 103 108 

B - 14 2 12 120 125 1 7 198 204 0 2 84 -98 2 2 125 -137 B - 14 
Fe 3 1 286 -302 1 10 120 -102 0 4 327 -333 2 3 120 122 K L Fo Fe 

3 2 349 -357 1 11 212 235 0 6 184 186 2 6 79 59 0 0 315 311 
3 3 87 -92 2 0 90 -103 1 1 103 97 2 7 174 -173 0 2 75 76 
3 S 349 353 2 2 180 178 1 2 112 109 3 1 152 -155 1 1 100 90 
3 6 98 -108 2 3 153 -163 1 4 99 101 2 135 132 2 0 167 151 
3 7 132 124 2 6 118 -126 1 5 109 122 3 3 126 -125 2 1 116 -98 
3 8 112 109 2 7 230 237 1 6 88 -71 3 5 84 -73 2 3 68 —66 
3 11 110 96 2 8 93 82 1 7 111 -134 3 6 101 -104 3 1 102 81 
3 12 104 -101 2 10 135 153 1 9 225 235 3 7 75 -62 3 2 71 -69 
4 1 101 -104 3 0 266 -269 2 4 230 238 3 9 93 81 4 3 108 92 
4 2 105 -116 3 1 151 142 2 5 232 244 4 1 127 -114 5 0 82 63 
4 3 150 143 3 2 75 -64 2 9 137 -120 4 2 75 -63 
4 S 117 -122 3 3 318 325 3 1 254 248 4 4 124 -115 
4 S 82 86 3 4 117 103 3 2 108 104 4 5 85 -65 
4 11 93 -89 3 5 152 148 3 4 167 161 4 8 145 142 
4 13 92 86 3 6 103 96 3 5 99 -100 4 9 88 81 
S 1 267 268 4 0 134 •130 3 7 133 -119 5 0 132 -144 
S S 128 136 4 1 219 220 4 1 140 143 5 2 130 125 
5 6 372 -373 4 4 131 128 4 2 102 103 5 3 92 -83 
5 7 103 107 4 7 148 144 4 3 122 -129 5 6 99 -85 
S 6 110 -108 4 9 180 -181 4 5 102 98 6 0 124 -101 
5 10 147 155 4 10 155 -164 4 6 129 •120 6 1 183 -167 
S 12 111 113 5 1 116 117 4 7 142 •130 6 3 138 -143 
6 1 169 -164 5 3 222 218 4 8 132 •130 6 6 74 36 
6 3 136 138 5 4 155 -157 5 1 166 165 7 1 85 82 
6 S 91 55 5 8 184 190 5 2 81 -71 7 2 129 113 
6 7 96 93 5 10 156 151 5 4 113 118 7 5 111 -83 
6 11 109 -97 6 0 153 146 5 5 105 -80 7 6 77 -63 
7 2 107 -101 6 1 291 283 5 8 87 90 8 0 192 •180 
7 5 241 -240 6 B 106 -85 6 1 232 214 8 4 79 67 
7 6 297 -293 6 9 180 -168 6 2 101 -86 8 5 77 -65 
7 7 85 88 7 2 97 -81 6 3 144 -136 9 0 121 117 
7 9 194 200 7 3 98 -74 6 6 81 58 9 2 116 100 
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SECTION III. SYNTHESIS AND REACTIONS OF AMINOOXY CARBENE 

COMPLEXES OF RHENIUM 
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SUMMARY 

The reaction of Re(CO)gBr and HNCH^Hg, In the presence of Br", gives 

the aminooxy carbene complex cis-Re(C0)4(Br)(=C0CH2CH2NH) (I) at room 

temperature, but fac-Re(C0)g(Br)(=CÔCH^CH^H)2 (II) is obtained in 

refluxing CH3CN. Refluxing I with PPhg in toluene gives fac-RefCO)]-

(PPhg)(Br)(=CÔCH^CH^H) (III). Both I and III are deprotonated by n-BuLi 

to give the imine complexes, Re(CO)^(Br)(-C=NCH^CH^)"Li'*' and Re(C0)3-

(PPhg)(Br)(-C=NCH^CH^)"L1^, respectively, whose nitrogen atoms are 

methylated with Me^O* to yield the N-methyl carbenes, Re(C0)4(Br)-

(sCOCHgCHgNMe) (V) and Re(C0)3(Br)(PPhg)(cCOCH^ciyiMe) (IV). The reaction 

of V with MeLi yields Re(C0)^(=CÔCH^CH^Me)"L1'^ which then reacts with Mel 

to generate the carbene-alkyl compound Re(C0)^(CH3)(=CÔCH^CH^Me) (VI). 

Upon reaction with potassium hydrotris(l-pyrazolyl)borate, KHB(pz)3, I 

yields fac-[n^-HB(pz)3lRe(C0)3(=CÔCH^CH^H) (VII), in which the HB(pz)3 is 

only bidentate. Under UV photolysis VII loses a CO thereby allowing the 

third pyrazolyl group to coordinate in (n^-HB(pz)3lRe(C0)2(=CÔCH^CH^H) 

(VIII). All of the new compounds are characterized by their IR, NMR, 

and NMR spectra. 
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INTRODUCTION 

Our group has reported the synthesis of a number of transition metal 

complexes containing cyclic dioxy-, aminooxy-, aminothio-, and 

dithiocarbene ligands [1-4]. The aminooxycarbene complexes were produced 

by the halide-catalyzed reaction of transition metal carbonyls with 

aziridine according to eq. 1. 

H 

M: Fe(C0)4, RefCO),/ (X = CI, Br, I), MnfCO)*/ (X = CI, Br, I), 

CpFe(C0)2+, CpMn(CO)(NO)+, CpRufCOlg*, and CpFefPPhgifCO)*. 

In the present paper, we report further studies of the aminooxy carbene 

complex, Re(C0)4(Br)(=CÔCH^CH^H) (I) in which CO is replaced by phosphine 

or hydrotris(pyrazolyl)borate ligands, the Br is replaced by CHg, and the 

H on the carbene N is replaced by CHg. 

(1) 



www.manaraa.com

77 

EXPERIMENTAL SECTION 

General procedures 

All reactions and manipulations were performed using standard Schlenk 

techniques under prepurified Ng. Unless noted otherwise, reagent grade 

chemicals were used without further purification. Methylene chloride, 

hexanes and acetonitrile were distilled from CaHg and stored under Ng over 

type 4Â molecular sieves. Tetrahydrofuran (THF) and diethyl ether were 

distilled from sodium benzophenone ketyl under Ng. 

The starting compounds Re(CO)gBr [5] and Re(CO)^(Br)(=:CÔCH^CH^H), I, 

[2| were prepared as reported in the literature. Aziridine [6] (CH2CH2NH) 

was distilled and stored over KOH before use. Schlenk flasks used in 

reactions of n-BuLi or CHgLi were dried in an oven at 120 "C overnight 

prior to use and then cooled in a dessicator flushed with N2 [7]. 

Infrared spectra were recorded on a Perkin-Elmer 681 instrument. 

and C^H} NMR spectra were recorded on a Nicolet 300 MHz spectrometer 

at room temperature. Cr(acac)3 was added to the solutions to reduce 

NMR data collection times. Melting points (uncorrected) of the compounds 

were determined in air on a Thomas Hoover capillary melting-point 

apparatus. Electron impact mass spectra were obtained using a Finnigan 

4000/GC-MS. Microanalyses were performed by Galbraith Laboratories, 

Knoxville, TN. 
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fac-Re(C0)3(Br)(=C0CH2CH2NH)2 (II) 

To a mixture of 0.50 g (1.2 mrnol) of Re(C0)5Br and 0.51 g (2.5 mrnol) 

of BrCH2CH2NH2*HBr in 20 ml of CH3CN was added 0.16 ml (3.1 mrnol) of 

aziridine. After being refluxed under N2 for 5 h, the reaction was 

complete according to the IR spectrum. The reaction mixture was taken to 

dryness under vacuum. The yellow residue was dissolved in 20 ml of 

CH2CI2. After filtering through anhydrous MgSO*, the CH2CI2 solution was 

concentrated and 30 ml of hexanes was added. It was stored at -20°C 

overnight to generate yellow microcrystals. Yield: 0.46 g (76%). M.p. 

124-127°C. Anal. Found: C, 21.92; H, 1.94; N. 5.48. Calcd for 

CgH2oBrN20gRe: C, 21.95; H, 2.03; N, 5.69. Mass spectrum: m/e (rel. 

intensity, probable assignment): 491.9 (3.6, M*); 463.9 (3.56, (M-CO)*); 

435.9 (7.24, (M-2C0)+); 408.0 (1.48, (M-3C0)+); 336.9 (14.2, Re(Br)-

(C0CH2CH2NH)+); 308.9 (16.4, Re(Br)(CH2CH2NH)+); 71.0 (100, COCH2CH2NH+). 

fac-Re(CO)3(PPh3)(Br)(=cÔCH^CH^H) (III) 

A mixture of PPh3 (0.087 g, 0.33 mmol) and I (0.15 g, 0.33 mmol) in 

20 ml of toluene was refluxed under N2 for 15 min. The solvent was 

removed under vacuum. The colorless residue was extracted with CH2CI2, 

and hexanes were added until a cloudy solution was observed. The solution 

was stored overnight at -20°C to give white crystals. Yield: 0.22 g 

(96%). M.p. 193°C (decomp.). Anal. Found: C, 42.03; H, 3.14; N, 2.08. 

Calcd. for C24H2oBrN04PRe: C, 42.16; H, 2.93; N, 2.05. Mass spectrum: 

m/e (rel. intensity, probable assignment); 683.0 (7.9, M+); 654.8 (17.1, 
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(M-CO)+); 626.7 (29.0, (M-2C0)+); 598.7 (30.6, (M-3C0)+); 527.6 (5.9, 

Re(PPh3)(Br)+); 262 (100, PPhg). 

fac-Re(C0)3(PPh3)(Br)[=CÔCH^CH^(CH3)] (IV) 

A slight excess of n-BuLi (0.30 ml of 2.4 M n-BuLi in hexane, 0.72 

mmol) was injected into a solution of 0.46 g (0.68 tmtiol) of Re(C0)3(PPh3)-

(Br)(=cÔCH^CH^H), III, in 50 ml of freshly distilled THF at -78°C to 

generate the deprotonated imine complex, Re(C0)3(PPh3)(Br)(-C=NCH2CH^)'' 

Li"^. At -78°C, 0.15 g (0.72 mmol) of Me30"^PFg" was added to the yellow 

solution. After stirring for 5 h at room temperature, the mixture was 

filtered through anhydrous MgSO*, and then the solvent was removed under 

vacuum. The yellow residue was chromatographed on a silica gel column 

(2.5 X 15 cm) using CH2CI2 as the eluent to give a colorless solution. 

The solvent was removed under vacuum. Colorless crystals of the product 

were obtained from CH2Cl2/hexanes at -20°C. Yield; 0.37 g (78%). M.p. 

97-99°C. Anal. Found: C, 42.19; H, 3.14; N, 1.75. Calcd. for 

C25H22B'^N04PRe*0.1 CH2CI2: C, 42.66; H, 3.12; N, 1.98. Mass spectrum: 

m/e (rel. intensity, probable assignment): 696.9 (2.0, M^); 668.9 (6.0, 

(M-CO)+); 641.0 (8.0, (M-2C0)+); 612.9 (2.0, (M-3C0)+); 434.9 (17, 

Re(C0)3(Br)(=œCH^CH^Me)+); 406.9 (32, Re(C0)2(Br)(=cÔCH^ci^Me)+); 262.1 

(100, PPh3). 

cis-Re(C0)4(Br)[=CÔCH^CH^(CH3)| (V) 

One equivalent of n-BuLi (0.30 ml, 2.4 M of n-BuLi in hexanes, 0.72 

mmol) was injected into a 50 ml THF solution of 0.32 g (0.72 mmol) of 



www.manaraa.com

80 

Re(C0)4(Br)(=CÔCH^CH!^H) at -78°C. Keeping the temperature at -78°C, 0.15 

g (0.72 mmol) of MegO+PFg" was added. After the solution was allowed to 

reach room temperature, it was stirred for 2 h. The pale yellow solution 

was taken to dryness, and the residue was chromatographed on a silica gel 

column (2.5 x 16 cm). The first band (pale yellow) which was eluted with 

1:1 CH2Cl2/hexanes gave a minor product which was possibly Re(C0)4(CH3)-

(=CÔCH^CH^H). The second band (pale yellow) eluted with 2:1 CHgClg/ 

hexanes and contained compound V. The latter solution was evaporated 

under vacuum to yield a pale yellow powder, which was recrystallized from 

CH2Cl2/hexanes at -20°C to give pale yellow crystals of RefCOj^fBr)-

[=CÔCH^CH^(CH3)]. Yield: 0.10 g (32%). M.p. 129-132°C. Anal. Found: 

C, 20.87; H, 1.60; N, 2.99. Calcd. for CgHyBrNOgRe: C, 20.73; H, 1.51; 

N, 3.02. Mass spectrum; m/e (rel. intensity, probable assignment): 

462.9 (79.4, M+); 434.9 (70.3, (M-CO)+); 406.9 (100, (M-2C0)+); 378.9 

(14.4, (M-3C0)+); 350.9 (3.71, (M-4C0)+), 323.0 (5.52, Re(Br)-

(CH2CH2NMe)+). 

cis-Re(C0)4(CH3)[=CÔCH^CH7N(CH3)l (VI) 

A slight excess of CH3Li (0.20 ml of 1.4 M CH3LI in Et20, 0.28 mmol) 

was injected into a 30-ml THF solution of Re(C0)4(Br) [=CÔCH2CH^(CH3) ] (V) 

(0.13 g, 0.27 mmol) at -78°C, and then excess CH3I (0.10 ml, 1.6 mmol) was 

added. After being stirred at room temperature for 5 h, the mixture was 

taken to dryness under vacuum at 0°C because of the high volatility of the 

product. The yellow oily residue was chromatographed on a silica gel 

column (2.5 x 10 cm). The colorless band was eluted with 1:1 CH2C12/ 
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hexanes, and the solution was evaporated under vacuum at O'C to generate 

pure white solid VI. Yield: 0.070 g (64%). M.p. 119-120°C. Anal. 

Found: C, 27.31; H, 2.80; N, 3.38. Calcd. for CgHigNOgRe: C, 27.12; H, 

2.51; N, 3.52. Mass spectrum: m/e (rel. intensity, probable 

assignment): 399.0 (22.2, M+); 384.0 (100, (M-CHg)*); 356 (73.5, (M-CH3-

C0)+); 328 (51.3, (M-CH3-2C0)+); 313.0 (52.3, Re(C0)2(=CÔCH^CH^)+) ; 300.0 

(22.9, (M-CH3-3C0)+); 272.0 (6.11, (M-CH3-4C0)+). 

fac-(n^-HB(pz)31 Re(CO)3(^COCHgCHgNH) (VII) 

A solution of 0.090 g (0.34 mmol) of potassium hydrotris(pyrazolyl)-

borate, KHB(pz)3, and 0.15 g (0.34 mmol) of Re(C0)4(Br)(=CÔCH^CH^H) (I) 

in 40 ml of THF was refluxed and stirred under N2 for 18 h. A colorless 

solution and white precipitate were obtained. The mixture was filtered 

through anhydrous MgSO^, and the solvent was removed under vacuum. The 

white residue was recrystallized from CHgClg/hexanes at -20°C. Colorless 

crystals were obtained. Yield: 0.10 g (55%). Anal. Found: C, 32.63; H, 

3.00; N, 17.58. Calcd. for C15H15BM7O4 Re: C. 32.49; H, 2.71; N, 

17.69. Mass spectrum: (No parent ion (M"*") peak was observed at 555 (for 

the most intense peak which contains ^^B and ^®^Re isotopes), but it did 

show peaks due to its fragments.) m/e (rel. intensity, probable 

assignment): 527.4 (12.8, (M-CO)+); 499.4 (1.9, (M-2C0)+); 484.3 (26.3, 

(M-CHgCHgNH)*); 400.3 (33.9, HB(pz)3Re+); 68.0 (100, C3H4N2+). 



www.manaraa.com

82 

[n^-HB(pz)3JRe(C0)2(=œCH^CHp<H) (VIII) 

A 35 ml THF solution of 0.26 g (0.47 mmol) of [Ti^-HB(pz)3lRe(C0)3-

(=CÔCH2CH^H) was photolyzed in a quartz tube at x = 254 nm for 18 h when 

the reaction was complete (IR evidence). A pale brown solution was 

obtained. The solvent was removed under vacuum and the residue was 

chromatographed on a silica gel column (2.5 x 10 cm). A pale yellow band 

containing the product was eluted with 2:1 CHgClg/hexanes. The solution 

was taken to dryness. Pale yellow microcrystals were obtained by 

recrystallization from CH2Cl2/hexanes at -20°C. Yield: 0.060 g (23%). 

M.p. 202°C (decomp.). Anal. Found: C, 31.58; H, 2.83; M, 18.07. Calcd. 

for CisHigBNyOgRe'O.OGI CH2C12: C, 31.77; H. 2.85; N, 18.45. Mass 

spectrum: m/e (rel. intensity, probable assignment): 527.1 (100, M*); 

499.1 (5.85, (M-CO)+); 456.0 (5.11, HB(pz)3Re(C0)2+); 443.1 (26.6, 

(M-3C0)+); 415.1 (31.8, HB(pz)3Re(NH)+); 400.1 (36.1, HB(pz)3Re+). 
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RESULTS AND DISCUSSION 

The aminooxycarbene complex ç1s-Re(C0)^(Br)(=CÔCH^CH^H) (I) was 

prepared previously [2] by reaction of Re(CO)gBr with aziridine and 

BrCH2CH2NH3*Br" in CH3CN at room temperature for J5 min (eq. 1). We now 

find that refluxing this mixture for 5 h with additional aziridine yields 

(76%) the bis(carbene) complex, II, eq. 2. It seems that both aziridine 

^ BrCH,CH,NH,.HBr , , 
Re(CO)gBr + 2 HN^J ^cH^cT > fac-Re(C0)2(Br)(=C0CH2CH2NH)2 (2) 

II 

and BrCH2CH2NH2*Br" are required in order to obtain maximum yields of I or 

II from the reaction. If the reaction is performed by generating 

aziridine in situ from BrCH2CH2NH2+Br" and NaH (2 eqt.), some RefCOigBr 

remains unreacted even after stirring for 4 days in CH3CN at room 

temperature. When this reaction is carried out in refluxing CH3CN for 30 

min, all of the Re(CO)gBr reacts to give a mixture of I and II. IR 

spectra taken during the reaction in eq. 2 show the presence of 

Re(CO)^(Br)(=CÔCH^CH^H) (I) as an intermediate which converts to the 

biscarbene compound, II, by further reaction with HNCH2CH2. The 3 nearly 

equally-intense v(CO) absorptions in the IR spectrum of II (Table 1) 

Indicate a facial geometry for II. A similar biscarbene complex, 

Mn(C0)3(Br)(=CÔCH^CHp!lH)2, has been synthesized from Mn(CO)gBr and two 

equivalents of CNCH2CH2OH in Et20 at room temperature for Id [8]. The IR 

spectrum of 
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Table 1. IR data for the complexes in CH2CI2 solvent 

Complex IR, v(C0), cm-1 

cis-Re(C0)4(Br)(=C0CH2CH2NH), I 2115 m, 2009 vs , 1941 s 

fac-Re(C0)3(Br)(zfOCHgCHgNHjg, II 2040 vs, 1939 s , 1904 s 

fac-Re(C0)3(PPh3)(Br)(=C0CH2CH2NH), III 2039 vs, 1946 s, , 1905 s 

fac-Re(C0)3(PPh3)(Br)(=C0CH2CH2N(CH3)]. IV 2038 vs. 1943 s, , 1904 s 

cis-Re(C0)4(Br)(=C0CH2CH2N(CH3)], V 2113 m, 2015 s, 
1940 s 

1999 s. 

cis-Re(C0)4(CH3)1=C0CH2CH2N(CH3)1. VI 2079 m, 1975 s, 
1915 s 

1964 s. 

fac-[n^-HB(pz)3]Re(CO)3(=C0CH2CH2NH), VII 2033 s, 1930 s, 1894 s 

[n^-HB(pz)3]Re(C0)2(=C0CH2CH2NH), VIII 1923 s, 1829 s 
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Mn(C0)3(Br)(=C0CH2CH2NH)2 (\»(CO)(KBr) = 2018 vs, 1932 vs. 1905 sh, 1898 

vs) is similar to that of compound II (Table 1). 

The reaction (eq. 3) of I with an equimolar amount of PPhg in 

Re(CO)^(Br)(=cÔCH^ciYH) + PPhg toluene > (3) 

I 

fac-RefCOjgfPPhg)(Br)(«COCHgCHgNH) + CO (3) 

III 

refluxing toluene gives fac-Re(C0)3(PPh3)(Br)(=CÔCH^CH^H) (III) in 96% 

yield within 15 min. As for II, the 3 v(CO) bands in the IR spectrum 

(Table 1) of III indicate that it also has a facial structure; the 

spectrum is also very similar to that of the previously reported fac-

Re(C0)3(PPh3)(Br)(=CÔCH^CH^) (2038 s, 1958 s, 1906 s cm"!) (9). The 

similarity of the v(C0) frequencies for II and III suggest that the 

=CÔCH^CH^H and PPh3 ligands have comparable electronic properties, as has 

been noted previously [10]. The asymmetric Re center in III causes the 

protons in the carbene ligand to be diastereotopic and give an ABCD 

pattern in the NMR spectrum; thus, four multiplets are observed at 

2.88, 3.40, 3.94, 4.44 ppm (Table 2). In the NMR spectrum of III 

(Table 3) the doublet (^JpQ = 60.1 Hz) at 189.19 ppm is assigned to the CO 

trans to PPh3, and the other two doublets at 194.59 and 189.31 ppm with 

coupling constants of 8.60 and 7.39 Hz are assigned to the CO ligands cis 

to the PPh3. In other Re(I) complexes, Re(C0)4(dppe)'^, 
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Table 2. NMR data for the complexes in CDCI3 solvent at room 
temperature* 

Complex -NCHg- -OCH2- -NH- Others 

I 3.80 (t)b 4.77 (t)b 9.05 (br) 

II 3.77 (m) 4.66 (m) 8.93 (br) 

III 3.40 

2.88 

(m) 

(m) 

4.44 

3.94 

(m) 

(m) 

8.63 (br) 7.66 (m), 7.39 (m) (PPhg) 

IV 3.34 (m) 4.18 (m) 3.69 (s) (NCH3) 

3.18 (m) 3.52 (m) 7.60 (m), 7.39 (m) (PPhg) 

V 3.81 (t)C 4.65 (t)C 3.58 (s) (NCH3) 

VI 3.70 (t)d 4.56 (t)d -0.46 (s) (ReCHg) 

VII1 

3.39 (s) (MCH3) 
VII1 3.68 (m) 4.57 (m) 9.26 (br) 7.36 (m) (Hgiand Hg of pz) 

VIII1 

6.18 (m) (H4 of pz) 

VIII1 3.72 (t)® 4.50 (t)® 8.16 (br) 7.80 (d, lH)f, 7.67 (d, 2H)^ 

(H3 of pz); 6.19 (t. 3H)9 

(H4 of pz); 7.77 (d, 2H)^, 7.74 

(d. lH)h (H5 of pz) 

^Chemical shifts in s (relative to SifCHg)^) and coupling constants in 
Hz • 

J = 9.77 Hz. 

^ J = 9.89 Hz. 

^ J = 9.74 Hz. 

® J = 9.06 Hz. 

^ J = 1.47 Hz. 

9 J = 2.06 Hz. 

^ J = 2.22 Hz. 

^ acetone-dg solvent. 
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Table 3. NMR data for the complexes in CDCI3 solvent at room 
temperature® 

Complex Carbene C Carbonyl OCH2 NCHg Others 

208.19 188.60 73.24 45.59 
186.09 
185.13 

11^ 217.18 193.12 71.94 44.36 
192.72 
188.81 

IIlC 216.88 (d)® 194.59 (d)^ 71.46 43.48 133.36 (d) 
189.19 (d)9 132.72, 132.13 
189.31 (d)" 129.82 

127.74 (d) (PPhg) 

IV^ 213.02 (d)i 194.65.(d)j 70.74 52.33 37.94 (NCHo); 
191.80? (d) 134.81 (d) 
191.13' (d) 134.46, 

134.26, 130.85 
128.82 (d) (PPhg) 

Hz. 
^Chemical shifts in 6 (relative to SifCHg)^) and coupling constants in 

*^In CD3CN solvent. 

^In CD2CI2 solvent. 

'^In dg-acetone solvent. 

®JpC ~ 8.76 Hz. 

fjpc = 8.60 Hz. CO cis to PPhg. 

9jpQ = 60.1 Hz. CO trans to PPhg. 

^JpC = 7.39 Hz. CO cis to PPhg. 

^JpQ = 9.90 Hz. cis to PPhg. 

jjpc = 6.75 Hz. CO cis to PPhg. 

^JpC = 235 Hz. CO trans to PPhg. 

TjpC = 7.40 Hz. CO cis to PPhg. 



www.manaraa.com

Table 3. Continued 

88 

Complex Carbene C Carbonyl OCHg NCHg Others 

V 208.56 185.51 
184.82"' 
183.24 

70.30 51.32 37.49 (NCHg) 

VI 213.15 191.18"" 
190.19 
187.98 

69.95 50.66 37.02 (NCHo) 
-32.73 (ReCRg) 

Vlld 219.40 
218.90 

196.52 
196.26 
194.45 
191.84 

72.05 
71.51 

54.86 
45.14 

146.90, 146.02, 
144.93, 142.39, 
141.67 (Co of pz); 
137.93, 136.12, 
134.66, 132.03 
(Cc of pz); 
107.64, 106.70, 
106.51, 105.43, 
105.33, 104.88 
(C4 of pz) 

Vllld 209.69 not observed 70.63 45.59 146.39, 144.74 
(Co of pz); 
135.42 (Cc of pz); 
106.57, 106.36 
(C4 of pz) 

•"two CO groups trans to each other. 
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Re(C0)3(dppe)[=C(0Et)(S1Ph2)]+ and RefCOjgfdppeifCOSIPhg), coupling 

constants to cis and trans phosphines are 6-9 and 40-60 Hz, respectively 

[ 1 1 1 .  

The neutral imine complex, CpFe(C0)2(-C=NCH2CH20), can be produced by 

deprotonation of the aminooxycarbene, CpFe(C0)2(=C0CH2CH2NH)+BF4", in 

CH2CI2 by K2CO3 or NaH [101; this imine complex reacts with electrophiles 

(£•*•) [12] (e.g., MegO+PFg" or allyl bromide) yielding the N-alkyl carbene 

compounds (eq. 4). Similarly, the diaminocarbene 

[MkCOCHgCHgNHI* —^> M-SïicH^CH^ -^> [M=CÔCH^CH^E1'^ (4) 

trans-((PPhg)2Pt[CN(p-MeCgH^)CH2CH2N(H)]BrJBF^ reacts with n-BuLi 

at -8°C to give the intermediate imino complex trans-{(PPh3)2Pt-

[CN(p-MeCgH^)CH2CH2N1Br} which rapidly reacts with allyl bromide or 

propargyl bromide to afford the corresponding N-substituted products 

(131. Attempts to deprotonate the carbene nitrogen atoms in RefCOj^fBr)-

(=CÔCH^CH^NH) (I) with the bases, NaH, LiAlH*, NaN(SiMe3)2 and 

Re(C0)3(PPh3)(Br)(=C0CH2CH2NH) (III) with NaH were unsuccessful. However, 

I is deprotonated by n-BuLi, PhLi or NaNp and III is deprotonated by 

n-BuLi to produce the imine complexes, Re(C0)4(Br)(-C=NCH2CH20)"Li* and 

Re(C0)3(PPh3)(Br)(-C=NCH2CH20)"Li^ (eq. 5). These anionic imine compounds 

have IR spectra with v(C0) relative intensities similar to their 

aminooxycarbene precursors (I and III), but the v(CO) positions are about 

15-20 cm'l lower. 
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Re(C0)3(L)(Br)(=C0CH2CH2NH) > RefCOjgtLifBrïfaCOCHgCHgN)-

(5)  

Me^O I I 
—> fac-Re(C0)3(L)(Br)[=C0CH2CH2N(CH3)) 

IV: L = PPhg 

V: L = CO 

The N atom of the anionic imine complexes reacts with MegO+BF^" to 

give the N-methyl carbenes, Re(CO)^(Br)(=CÔCH^CH^Me) (V) and 

Re(C0)3(PPh3)(Br)(=CÔCH^CH^Me) (IV) (eq. 5) in 64% and 78% isolated 

yields. The -CH2CH2- region of the NMR spectrum of Re(C0)3(PPh3)(Br)-

(=CÔCH^CH^Me) (IV) shows a pattern similar to that in III (4 sets of 

multiplets at 3.18, 3.34, 3.52 and 4.18 ppm) as expected for an ABCO 

system. The 3 v(CO) bands of IV and 4 v(CO) bands of V in their IR 

spectra (Table 1) suggest that they have facial and cis structures, 

respectively, as for the related complexes I and III. The ^^C NMR 

spectrum of V has 3 carbonyl peaks, 185.51, 184.82 and 183.24 ppm, with 

approximate relative intensities of 1:2:1. 

The reaction of Re(CO)^(Br)(=CÔCH^CH^H) with n-BuLi gives not only 

the deprotonated anionic imine compound Re(C0)^(Br)(-C=KH^CH^)''L1''', but 

apparently also the reduced Re(C0)4(=C0CH2CH2NH)"Li+ product, as suggested 

by the generation of a small amount (10%) of a byproduct, Re(C0)4(CH3)-

(=CÔCH^CH^H) which was identified by its IR and NMR spectra (v(C0), in 

CH2CI2: 2068 m, 1954 vs, 1919 s cm"^; 6, in CDCI3: 0.06 (s, 3H, Re-Me); 
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3.70 (t, 2H, J = 9.2 Hz, -NCHg-); 4.58 (t, 2H, J = 9.5 Hz, -OCHg-) 7.44 

(br, IH, -NH-) ppm). 

The reaction of Re(CO)^(Br)(=CÔCH^CH^Me) (V) and methyl lithium in 

THF at -78°C generates Re(CO)^(zCOCHgCHgNMe)"Liwhose IR spectrum 

(v(CO): 2002 s, 1910 s, 1872 vs cm"^) is similar to that reported 

previously for MnfCOi^fPPhgi'Na* [14] at 1941 s, 1846 ms, 1815 vs cm"^. 

This anionic intermediate reacts with Mel to give Re(C0)4(CH3)-

(=CÔCH^CH^Me) (VI) in 64% yield (eq. 6). The presence of 4 v(CO) bands 

Re(C0)4(Br)[=C0CH2CH2N(CH3)l ^—> Re(C0)4[=C0CH2CH2N(CH3)I'Li"^ 

V 

cis-Re(C0)4(CH3)[=cÔCH^CH^N(CH3)l (6) 

VI 

in the IR spectrum (Table 1) of VI indicates that it has a cis structure. 

Recently there has been considerable theoretical [15] and synthetic 

[16] interest in carbene-alkyl complexes as models for possible species 

present on catalyst surfaces in the Fischer-Tropsch reaction. There are, 

however, only two known examples of carbene-alkyl complexes also 

containing CO ligands, Ir(Cl)(C0)(PPhMe2)2(Me)(=C(0Me)Me)+PFg" [17] and 

the dinuclear Me(C0)3Re(u-PPh2)2W(C0)3(=C(0Et)Me) [18]. Thus, we were 

interested in exploring the possibility of CH3 migration onto the carbene 

or CO ligand in complex VI. Unfortunately, refluxing PPh3 or PMe3 with VI 
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in benzene generates very low yields of only phosphine-substituted 

products, possibly fac-Re(C0)g(PR2)(CHg)(zCOCH^CH^Me), although efforts 

to characterize it were unsuccessful. Also, photolysis of PPhg or PMeg 

with VI in THF gives primarily decomposition products. The lack of CH3 

migration in this system may reflect the unreactivity of MeRe(CO)g which 

does not give the acyl complex MeCORe(CO)g even under 320 atm of CO at 

140°C; further heating to 200° leads only to RepfCOliQ {191. 

The reaction of Re(CO)^(Br)(=CÔCH^CHpiH) (I) with NafCgHg) in 

refluxing THF gives only the deprotonated product Re(C0)4(Br)(-

C=NCH2CH20)"Na*, as determined by the IR spectrum of the solution. When I 

reacts with Li+(CgMeg)", no stable complex could be isolated. However, 

complex I reacts with the hydrotris(pyrazolyl)borate, HBfpz)]", ligand in 

refluxing THF for 18 h to yield [n2-HB(pz)3]Re(C0)3(=CÔCH^CH^NH) (VII) 

(eq. 7). The IR spectrum of VII exhibits three strong bands of 

KIHBfpz)]] + Re(CO)^(Br)(=cÔCH^CH^H) 

I 

-^> [ n^-HB (pz ) 3 ] Re (CO) gfcCOCHgCHgNH) + KBr + CO (7) 

VII 

approximately equal intensity at 2033, 1930 and 1894 cm~^, which is 

consistent with a facial arrangement of the three CO ligands. In order to 

accommodate the 18 electron rule, the presence of three carbonyls and one 

carbene ligand requires that only two of the three pyrazolyl groups in 
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HBfpz)]" coordinate to the metal which leaves the third one uncoordinated. 

Although the IR spectrum in the v(CO) region of VII is consistent with the 

presence of only one fac isomer, the four CO and two carbene C resonances 

in the NMR spectrum suggest the presence of two isomers. The 

structures of these isomers is not entirely clear. Previously, two 

isomers were observed (201 in the NMR spectra of [ti^-B(pz)4](n®-Cp)(C0)2Mo 

and attributed to the two structures in Figure 1, resulting from the 

shallow boat configuration of the chelate ring. Similar structures were 

proposed [21) for the two observed isomers of CpRu(n^-HB(3,5-

Me2Pz)3](C0). It is possible that VII exists as similar isomers; however, 

the two isomers resulting from interchanging the non-coordinated H and pz 

groups on the 8 cannot be excluded. The NMR spectrum of VII at room 

temperature consists of multiplets at 3.68 and 4.57 ppm and a broad band 

at 9.26 ppm which can be assigned to the NCH2CH2O and NH protons of the 

aminooxycarbene group and a complex group of resonances between 6.0 and 

8.0 ppm which are due to the protons on the pyrazolyl rings. The two 

multiplets for the OCH2 and NCH2 protons suggest that more than one isomer 

is present. The complicated pattern for H3, H4 and H5 in the pyrazolyl 

ligand also suggests the presence of isomers. 

Refluxing the bidentate derivative [n^-HB(pz)3lRe(C0)3(=CÔCH^CH^H) 

in THF (2 days, no reaction) or dimethylformamide (1 day, decomposition) 

does not force the third pyrazolyl group to coordinate to the metal; 

however, when a THF solution of [n^-HB(pz)3JRe(C0)3(=cÔCH^CH^H) is 

photolyzed with UV light, the tridentate [n^-HB(pz)3]Re(CO)2(=C0CH2CH2NH) 

(VIII) is obtained (eq. 8). The IR and NMR spectra of VIII are 
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PZ 

PZ 
\ N-K ^ 

CP 

>Mo 

pz 0^ C 

Fig. 1. Possible isomers of [n^-BCpz)^]{n®-C5Hg)(C0)2Mo 



www.manaraa.com

95 

consistent with the presence of a tridentate pyrazolylborate ligand. The 

presence of 2 v(CO) bands of approximately equal intensity at 1923 and 

1829 cm'l indicates that the two CO ligands are cis to each other [22]. 

The NMR spectrum (Table 2) exhibits two sets of pyrazolyl resonances 

[ n ̂-HB ( pz ) 3 ] Re ( CO ) 3 ( ̂c'Ôcii^cîyiH ) 

VII 

-^> [n^-HB(pz)3]Re(C0)2(=cÔcH^ciyH) + CO (8) 

VIII 

with an intensity ratio of 2:1. Assignments of the H3, H4, and H5 protons 

were made following those of Trofimenko (23) and are given in Table 2. 

Attempts to convert VIII back to VII by reacting THF solutions of VIII 

with up to 35 atm of CO at 75°C yielded no evidence for the reformation of 

VII (the only metal carbonyl compound is starting material VIII). 
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CONCLUSION 

The carbene ligand in çi_s-Re(CO)^(Br)(=CÔCH^ZH^H) (I) is 

sufficiently stable that a variety of reactions can be performed on I 

without affecting the carbene ligand. The NH group may be deprotonated 

and the resulting imine methylated (eq. 5). The CO ligands may be 

substituted by PPhg (eq. 3) or HBfpz)^" (eq. 7 and 8), and the Br ligand 

may be replaced in the N-methyl complex (V) by a methyl. 
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SECTION IV. PLATINUM(O) COMPLEXES AS CATALYSTS OF METAL 

CARBONYL SUBSTITUTION REACTIONS 
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ABSTRACT 

The reaction between metal carbonyls (Fe(CO)g, W(CO)g, CpFe(C0)2l. 

RefCOlgfCHg), Re2(C0)iQ, and 0s3(C0)j2) and PPhg in refluxing benzene is 

catalyzed by PtfPPhg)^ and yields the mono-substituted compounds as the 

only products (72-98%). The substitution of Fe(CO)g by PPhg and PMegfh 

and CpFefCOjgl by PPhg and PfOMe)^ are also catalyzed by Pt(dba)2, 

dba = dibenzylideneacetone, suggesting that Ptfdbajg may be of general 

utility as a catalyst for substitution reactions of metal carbonyls with 

monodentate phosphines. Evidence is presented which indicates that the 

reactions proceed by electron transfer catalysis (ETC) involving radical 

intermediates. 
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INTRODUCTION 

Phosphlne-substituted metal carbonyls have often been prepared by 

methods involving thermal or photochemical replacement of a CO ligand, 

despite several commonly-observed problems: low yields, mixtures of mono-

to multi-substituted products and long reaction times (l). More recently, 

several new procedures [2] have been developed to promote CO substitution 

by other ligands under mild conditions. Among them is Me^NO [3], which 

oxidatively decarbonylates metal carbonyls leading to a coordinatively 

unsaturated intermediate. Sodium benzophenone ketyl (BPK) [4,5] has been 

shown to catalyze CO substitution. Also several transition metal 

complexes induce catalytic CO displacement in metal carbonyls. These 

include [CpFe(C0)2l2 (61, (CpMofCOjgjg [7], CoClg (8), PdO [9], and 

Fe2(C0)g(SMe)2 (101. In most of these reactions, there is evidence for or 

it has been suggested that electron transfer catalysis (ETC) is 

involved. We report here that the Pt(0) complexes, PtfPPhg)^ and 

Pt(dibenzylideneacetone)2, (Pt(dba)2), also catalyze the phosphine 

substitution of CO in mono-, di-, and trinuclear metal carbonyl 

complexes. These two catalysts offer a convenient, high yield route to 

monosubstituted Mjj(CO)y_jL complexes where L is a monodentate P-donor 

ligand. 
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EXPERIMENTAL SECTION 

General 

Ail reactions were performed under prepurified Ng. Unless noted 

otherwise, reagent grade chemicals were used without further purification. 

Methylene chloride and hexanes were distilled from CaH2 and stored under 

Ng over type 4Â molecular sieves. Benzene was distilled from sodium 

benzophenone under Ng. 

The starting compounds, W(CO)g, Fe(CO)g, CpMnfCO)], RegfCOliQ, and 

Ph2PCH2CH2PPh2 (dppe) were purchased from Pressure Chemical Co, Other 

starting compounds, CpFe(C0)2l (111, RefCOjgfCHg) (12), PttPPhg)^ [13], 

and Pt(dba)2 (14], were prepared as reported in the literature. The 

compound Os3(CO)j^2 was prepared from OsO^ by a modification of a 

literature procedure (15] which was carried out in a 300 mL stainless 

steel pressure autoclave (Parr, model no. 4761). 

Infrared spectra were recorded on a Perkin-Elmer 681 instrument. 

NMR spectra were recorded on a Nicolet NT-300 spectrometer. Electron 

impact mass spectra were obtained using a Finnigan 4000 6C-MS. 

Reaction of metal carbonyls with PPhg in the presence of PtfPPhg)^ 

A solution of PPhg (1-2 equivalents), the metal carbonyl compound (1 

equivalent) (W(CO)g, Fe(C0)5, CpFe(C0)2l, RefCOjgfCHg), CpMnfCO)], 

Re2(C0)iQ or 0^3(00)12) and Pt^PPhg)^ (0.1 equivalent) were brought to 

reflux in 50 mL of benzene under an N2 atmosphere. The reactions were 

monitored by changes in the IR spectra (2200-1600 cm"^). At the end of 

the reaction (as established by the disappearance of the starting 
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material), the solution was cooled to room temperature and the solvent 

removed under vacuum. The residue dissolved in CH2CI2 was then passed 

through a silica-gel column (2.5 x 15 cm) using 1:1 CH2Cl2/hexanes as the 

eluant. The PPhg-substituted products were collected. Recrystallization 

from CH2Cl2/hexanes gave the isolated products (% yields in Table 1) which 

were identified by their IR and NMR spectra (Table I). The catalyst, 

Pt(PPh3)4, was recovered. Also shown in Table I are results of control 

reactions where no Pt(0) catalyst was used. 

Reaction of metal carbonyls with liqands in the presence of Ptfdbaig 

A 50 mL benzene solution containing a donor ligand (PPhg, PPh2Me, 

dppe, PfOMe)], or norbornadiene) (usually 1.5 equivalents), a metal 

carbonyl (Fe(CO)g, or CpFe(C0)2l) (1 equivalent) and Pt(dba)2 (0.1 

equivalent) was refluxed in a Schlenk flask. The reaction was monitored 

by IR spectroscopy (2200-1600 cm"^), and heating was continued until the 

reaction had gone to completion. The solvent was removed in vacuum; the 

residue dissolved in CH2CI2 was chromatographed (2.5 x 15 cm) on 

silica-gel using 1:1 CH2Cl2/hexanes as the eluent. The products were 

recrystallized from CH2Cl2/hexanes. 
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RESULTS AND DISCUSSION 

The substitution of one CO ligand in a variety of metal carbonyl 

complexes by PPhg is catalyzed by PtfPPhg)^ (eq 1) in refluxing benzene. 

Pt(PPh-) 
"«(CO), + PPhj tenzene ' O 

Where Mj^(CO)y = W(CO)g. FefCO);, CpFefCOigl, RefCOigfCHg), RegfCOiig, and 

053(00)22* 

As summarized in Table 1, the products are isolated in 70-98% yields and 

the PtfPPhgXg catalyst may be recovered nearly quantitatively. Under the 

conditions of the reactions, but in the absence of the catalyst, there is 

essentially no reaction. Only the mono-phosphine-substituted complexes 

are obtained even when two equivalents of PPhg are used in the reactions, 

as for Fe(C0)5 and CpFe(C0)2l. Of the metal carbonyls studied, only 

CpMnfCO)] failed to undergo PtfPPhgj^-catalyzed substitution. CpMnfCO)] 

is quite inert to thermal substitution in the absence of catalyst (16), 

and attempted PdO-catalyzed [9d] substitution was also unsuccessful. 

The reaction between RegfCOi^Q and PPhg in refluxing xylene for 24 h 

yields Re^fCOjgfPPhgjg and mer-trans-HRe(C0)3(PPh3)2 as the main products 

[171. The reaction of Re^fCOi^Q with PMe2Ph is reported [181 to yield 

mixtures of Re2(C0)g(PMe2Ph) and Re2(C0)g(PMe2Ph)2. The Cp2Fe2(C0)4-
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Table 1. Experimental conditions for the reactions of metal carbonyls with PRo ligands in the 
presence of PtfPPhg)^ or Pt(dba)2 catalysts 

Metal Carbonyl Ligands Catalyst Mole ratio* Products Pt(0) Catalyzed Uncatalyzed 

(mmole) (L) Time % Yield Time Results 

W(C0)6 

(2.5 mmole) 

Fe{C0)5 

(2.5 mmole) 

PPhg Pt(PPh3)4 1:1:0.1 W(C0)5(PPh2)* 

PPhg PtfPPhg), 1:2:0.1 Fe(C0)4(PPh3)^ 

PPhg Pt(dba)2 1:1.5:0.1 Fe(C0)4(PPh3)^ 

PPhMeg Pt(dba)2 1:2:0.1 Fe(C0)4(PPhMe2) 

4 d 92 4 d NR^ 

5 h 98 19 h 

7 h 81 

1.5 h 79% 1.5 NR 

®Metal carbonyl:PR3:catalyst. 

^Magee, T. A.; Matthews, C. N.; Wang, T. S.; Wotiz, J. H. J. Am. Chem. Soc. 1961, 83, 3200. 

^KR = no reaction. 

'^Clifford. A. F.; Mukherjee, A. K. Inorg. Synth. 1966, 8, 185. 

^Without catalyst, only trace of Fe(C0)4L and Fe(C0)3L2 along with Fe(CO)g are observed. 
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Table 1. Continued 

Metal Carbonyl Ligands Catalyst Mole ratio® Products Pt(0) Catalyzed Uncatalyzed 

(mmole) (L) Time % Yield Time Results 

dppe Pt(dba)2 1:1.5:0.1 8 h NR 

cn 

I Qu Pt(dba)2 1:2:0.1 17 h NR 

NBD Pt(dba)2 1:2:0.1 17 h NR 

PPhg PtfPPhg)* 1:1:0.1 CpFe(C0){PPh3)I^ 50 min 87 24 h NR 

PPhg Pt(dba)2 1:1.5:0.1 CpFe(C0)(PPh3)I^ 50 min 85 

S 
C
O
 Pt(dba)2 1:2:0.1 CpFe(C0)IP(0Me)3]I^ 30 min 91 30 min g 

dppe Pt(dba)2 1:1.5:0.1 CpFe(dppe)I^ 1 h 84 1 h i 

1. A.; Lyons, H. J.; Manning, A. , R.; Rowley, J. M. Inorq. Chim. Acta 1969, 3. 346. 
Lyons, H . J.; Manning, A. R. Inorq. Chim. Acta 1970 , 4. 428 . c. Haines, R. J.; 

CpFe(C0)2l 

(0.50 mmol) 

DuPreez, A. L.; Marais, L. L. J. Organomet. Chem. 1971, 28, 405. 

^Eighty-three percent of CpFe(C0)2l was unreacted. 

^Green, M. L. H.; Whitely, R. N. J. Chem. Soc. (A), 1971, 1943. 

^Eighteen percent of CpFe(C0)2l was unreacted. 

o 
cn 
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Table 1. Continued 

Metal Carbonyl Ligands Catalyst Mole ratio* Products Pt(0) Catalyzed Uncatalyzed 

(mmole) (L) Time % Yield Time Results 

Re(C0)5(CH3) 

(10.30 mmol) 

Re2(C0)iQ 

(0.60 mmol) 

0s3(C0)j2 

(0.20 mmol) 

CpMn(C0)3 

(2.50 mmol) 

PPhg Pt(PPh3)4 1:1:0.1 Re(C0)4(PPh3)(CH3)j 17 h 86 24 h MR 

PPhj PtfPPhg)* 1:1:0.1 Re2(C0)g(PPh3)k 2d 72 2 d NR 

PPh3 PtfPPhg)* 1:1:0.1 0s3(C0)i^(PPh3)^ 5 min 98 2 h NR 

PPh3 Pt(PPh3)4 1:1:0.1 3d NR 

O •vj 

^McKinney, R. J.; Kaesz, H. 0. J. Am. Chem. Soc. 1975, 97, 3066. 

'^Dewitt, D. G.; Fawcett, J. P.; Poe, A. J. Chem. Soc., Dalton Trans. 1976, 528. 

^Bradford, C. W.; van Bronswijk, W.; Clark, R. J. H.; Nyholm, R. S. J. Chem. Soc. (A) 1970, 2889. 
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catalyzed (6dl substitution of RegfCOjig with PPhg was also 

unsuccessful. However, the present method gives Re2(C0)g(PPh3) in 72% 

isolated yield. 

The reaction of 683(00)^2 with PMe^ causes extensive cluster 

fragmentation [19] while the Na-BPK method provides poor yields of di- and 

tri-substituted products (4a). However, the PtfPPhg)^ catalyst affords a 

high yield (98%) of the mono-substituted product, OsgfCOiiifPPhg), in only 

5 mins. The PtfPPhgj^-catalyzed reaction of RefCOjgfCHg) and PPhg gives 

only RefCOj^fPPhgifCHg). This product had previously [20J been prepared 

from the reaction of RefCO^^fPPhgifBr) with MeLi. 

The mechanism (Scheme I) of reaction (1) has not been studied in 

detail, but may involve electron transfer with the formation of a labile 

19-electron metal carbonyl radical intermediate, as has been suggested for 

other [21] catalyzed metal carbonyl substitution reactions. This general 

type of mechanism for reaction (1) is supported by the inhibition of the 

reaction of CpFe(C0)2l (0.16 mmol) with PPhg (0.16 mmol) and PtfPPhg)^ 

(0.016 mmol) by galvinoxyl (0.008 mmol). In refluxing benzene, 58% of the 

CpFe(C0)2l is unreacted even after 4 h, whereas the reaction is complete 

in 50 min in the absence of galvinoxyl. The first step in the mechanism 

probably involves PPhg dissociation from Pt(PPh3)4 to give Pt(PPh3)3 which 

is known to occur in benzene solution [22j. Then, electron-transfer from 

the Pt(PPh3)3 to the metal carbonyl would generate a labile radical 

intermediate which would undergo rapid CO substitution by the PPh3 [23]. 

Electron transfer from the Mjj(C0)y_2^L~ radical then gives the Mj^(CO)y_j^L 

product and the reactive Mj^(CO)y" which continues the catalytic chain. 
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Scheme I 

PtfPPhg), > Pt(PPh3)3 + PPh3 

Pt(PPh3)3 + Mx(CO)y > Pt(PPh3)3+" + M^(CO)y-' 

Mx(CO)y-" + PPh3 > Mx(C0)y_i(PPh3)-' + CO 

Mx(C0)y.i(PPh3)- + Mx(C0)y > Mx(C0)y_i(PPh3) + Mx(C0y 
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It has been noted that only mono-substitution occurs in reaction 

(1). In terms of the mechanism, this is likely to be the case because the 

mono-substituted Mj^(CO)y_jL products are more electron-rich than Mj^(CO)y 

and would be poorer acceptors of an electron from the Pt(0) catalyst. 

Likewise, the catalyzed substitutions of all of the complexes should 

depend on the electron accepting abilities of the complexes. Those which 

are likely to be the best acceptors will have the lowest electron density 

as measured by their high v(C0) force constants. Thus, PtfPPhg)^ 

catalyzes CO substitution in the following complexes with relatively high 

\)(C0) force constants (given in parentheses); Fe(CO)g (17.6 and 17.0 

mdynes/Â) [24a], W(CO)g (16.56 mdynes/Â) [24a], CpFe(C0)2l (16.45 

mdynes/Â) [24b], Re(C0)g(CH2) (15.97 and 16.87 mdynes/Â) [24a), Re2(C0)]^Q 

(15.92 and 16.57 mdynes/Â) [24c], and 053(00)(16.53 and 16.79 mdynes/Â) 

[24d]. All of the complexes which react according to eq 1 have v(CO) 

force constants greater than 16.4 mdynes/Â, in contrast to the unreactive 

CpMn(C0)3 whose low kgg value (15.6 mdynes/Â) [24a] indicates that it is 

relatively electron-rich and would be a poor electron acceptor. 

Instead of using Pt^PPhg)^ as the catalyst in reaction (1), it is 

also possible to use Pt(dba)2 which under the conditions of the reaction 

with excess PPhg is converted to Pt(PPh3)2(dba) [14]. Thus, the reaction 

of Fe(CO)g, PPhg, and a catalytic amount of Pt(dba)2 in refluxing benzene 

gives (Table 1) an 81% yield of Fe(C0)4(PPh3). Similarly, the Pt(dba)2-

catalyzed reaction of CpFe(C0)2l with PPh3 gives CpFe(C0)(PPh3)(I). The 

successful use of Pt(dba)2 as a catalyst for the substitution of CO by 

PPh3 suggests that other monodentate phosphines could be used in analogous 
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reactions. Indeed, Pt(dba)2 does catalyze the reaction of Fe(CO)g and 

PPhMeg to give FefCOl^fPPhMeg) and the reaction of CpFe(C0)2l and PfOMe)] 

to give CpFe(C0)[P(0Me)3l(I). The reaction of CpFefCOigl and 

Ph2PCH2CH2PPh2(dppe) to produce CpFe(dppe)I in the presence of Pt(dba)2 is 

complete within 1 h, and the isolated yield is 84%. Without Pt(dba)2, the 

reaction is not complete (18% of CpFe(C0)2l remained unreacted) under the 

same conditions. There was no observed Pt(dba)2 catalysis of the 

reactions of FefCO)^ with dppe, PfOMe)^ or 2,5-norbornadiene(NBD), which 

suggests that the method may be limited to monodentate phosphines. 
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CONCLUSION 

There are several attractive features of the PtfPPhgi^-catalyzed 

method of substituting a CO ligand in metal carbonyls by PPhg: (a) The 

reaction cleanly provides mono-substituted products in high yields (70-

98%). (b) The catalyst can be recovered almost quantitatively at the end 

of the experiment, (c) For clusters which tend to fragment under other 

conditions, the PttPPhg)^ method yields the intact clusters, (d) k^g 

values are helpful for predicting metal carbony1 complexes to which the 

method can be applied. The substitution of one CO in Fe(C0)g and 

CpFefCOjgl by PPhg and/or PMegPh is also catalyzed by Ptfdbajg, suggesting 

that Pt(dba)2 may be used more generally to catalyze monodentate phosphine 

substitution of metal carbonyls. 
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SUMMARY 

0s3(C0)jj^(=C0CH2CH20) and OsgCCO)j^o(=CÔCH^Hi^)2 are synthesized from 

the reaction of 053(00)22 and ethylene oxide in the presence of Br". 

Fe(C0)4(=C0CH2CH20) decomposes with evolution of COg and ethylene. It 

also reacts with oxidizing agent, Me^NO or O2, to produce ethylene 

carbonate and reacts with H2 gas to give 1,3-dloxolane. 

In the reactivity studies of Re(CO)^(Br)(=cÔCH^CH^H), it shows that 

CO is replaced by phosphine or hydrotris(pyrazolyl)borate ligands, the Br 

is replaced by a methyl and the NH group Is replaced by N-CHj. 

The reactions between metal carbonyls and phosphines in refluxing 

benzene are catalyzed by Pt^PPhg)^ and Pt(d1benzylideneacetone)2. This 

method provides a convenient (short reaction time and recovery of 

catalysts), high yields (72-98%) route to only mono-substituted complexes. 
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